Learning the Structures of Online Asynchronous Conversations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-03-22

AUTHORS

Jun Chen , Chaokun Wang , Heran Lin , Weiping Wang , Zhipeng Cai , Jianmin Wang

ABSTRACT

The online social networks have embraced huge success from the crowds in the last two decades. Now, more and more people get used to chat with friends online via instant messaging applications on personal computers or mobile devices. Since these conversations are sequentially organized, which fails to show the logical relations between messages, they are called asynchronous conversations in previous studies. Unfortunately, the sequential layouts of messages are usually not intuitive to see how the conversation evolves as time elapses. In this paper, we propose to learn the structures of online asynchronous conversations by predicting the “reply-to” relation between messages based on text similarity and latent semantic transferability. A heuristic method is also brought forward to predict the relation, and then recover the conversation structure. We demonstrate the effectiveness of the proposed method through experiments on a real-world web forum comment data set. More... »

PAGES

19-34

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-55753-3_2

DOI

http://dx.doi.org/10.1007/978-3-319-55753-3_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084681752


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Jun", 
        "id": "sg:person.015256234023.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015256234023.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Chaokun", 
        "id": "sg:person.011533665437.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011533665437.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Heran", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Information Engineering, CAS, 100093, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458480.5", 
          "name": [
            "Institute of Information Engineering, CAS, 100093, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Weiping", 
        "id": "sg:person.013632154273.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013632154273.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, Georgia State University, 30302, Atlanta, Georgia, USA", 
          "id": "http://www.grid.ac/institutes/grid.256304.6", 
          "name": [
            "Department of Computer Science, Georgia State University, 30302, Atlanta, Georgia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cai", 
        "givenName": "Zhipeng", 
        "id": "sg:person.013363323156.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013363323156.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jianmin", 
        "id": "sg:person.012303351315.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-03-22", 
    "datePublishedReg": "2017-03-22", 
    "description": "The online social networks have embraced huge success from the crowds in the last two decades. Now, more and more people get used to chat with friends online via instant messaging applications on personal computers or mobile devices. Since these conversations are sequentially organized, which fails to show the logical relations between messages, they are called asynchronous conversations in previous studies. Unfortunately, the sequential layouts of messages are usually not intuitive to see how the conversation evolves as time elapses. In this paper, we propose to learn the structures of online asynchronous conversations by predicting the \u201creply-to\u201d relation between messages based on text similarity and latent semantic transferability. A heuristic method is also brought forward to predict the relation, and then recover the conversation structure. We demonstrate the effectiveness of the proposed method through experiments on a real-world web forum comment data set.", 
    "editor": [
      {
        "familyName": "Candan", 
        "givenName": "Sel\u00e7uk", 
        "type": "Person"
      }, 
      {
        "familyName": "Chen", 
        "givenName": "Lei", 
        "type": "Person"
      }, 
      {
        "familyName": "Pedersen", 
        "givenName": "Torben Bach", 
        "type": "Person"
      }, 
      {
        "familyName": "Chang", 
        "givenName": "Lijun", 
        "type": "Person"
      }, 
      {
        "familyName": "Hua", 
        "givenName": "Wen", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-55753-3_2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-55752-6", 
        "978-3-319-55753-3"
      ], 
      "name": "Database Systems for Advanced Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "asynchronous conversations", 
      "online social networks", 
      "instant messaging applications", 
      "mobile devices", 
      "sequential layout", 
      "text similarity", 
      "messaging applications", 
      "personal computer", 
      "conversation evolves", 
      "social networks", 
      "heuristic method", 
      "conversation structure", 
      "comment data", 
      "huge success", 
      "logical relations", 
      "messages", 
      "more people", 
      "computer", 
      "network", 
      "crowd", 
      "layout", 
      "time elapses", 
      "applications", 
      "conversation", 
      "method", 
      "effectiveness", 
      "devices", 
      "evolves", 
      "experiments", 
      "similarity", 
      "data", 
      "structure", 
      "elapses", 
      "success", 
      "people", 
      "reply", 
      "transferability", 
      "friends", 
      "decades", 
      "relation", 
      "previous studies", 
      "study", 
      "paper", 
      "online asynchronous conversations", 
      "latent semantic transferability", 
      "semantic transferability", 
      "real-world web forum comment data", 
      "web forum comment data", 
      "forum comment data"
    ], 
    "name": "Learning the Structures of Online Asynchronous Conversations", 
    "pagination": "19-34", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084681752"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-55753-3_2"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-55753-3_2", 
      "https://app.dimensions.ai/details/publication/pub.1084681752"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_53.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-55753-3_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-55753-3_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-55753-3_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-55753-3_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-55753-3_2'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      23 PREDICATES      74 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-55753-3_2 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N5f758f358cef42c8a396815b74a78295
4 schema:datePublished 2017-03-22
5 schema:datePublishedReg 2017-03-22
6 schema:description The online social networks have embraced huge success from the crowds in the last two decades. Now, more and more people get used to chat with friends online via instant messaging applications on personal computers or mobile devices. Since these conversations are sequentially organized, which fails to show the logical relations between messages, they are called asynchronous conversations in previous studies. Unfortunately, the sequential layouts of messages are usually not intuitive to see how the conversation evolves as time elapses. In this paper, we propose to learn the structures of online asynchronous conversations by predicting the “reply-to” relation between messages based on text similarity and latent semantic transferability. A heuristic method is also brought forward to predict the relation, and then recover the conversation structure. We demonstrate the effectiveness of the proposed method through experiments on a real-world web forum comment data set.
7 schema:editor N83776d8939ac4f2a84ccc97e65be81f1
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N58b84e86ed614bd7920fd920eaa25f7e
12 schema:keywords applications
13 asynchronous conversations
14 comment data
15 computer
16 conversation
17 conversation evolves
18 conversation structure
19 crowd
20 data
21 decades
22 devices
23 effectiveness
24 elapses
25 evolves
26 experiments
27 forum comment data
28 friends
29 heuristic method
30 huge success
31 instant messaging applications
32 latent semantic transferability
33 layout
34 logical relations
35 messages
36 messaging applications
37 method
38 mobile devices
39 more people
40 network
41 online asynchronous conversations
42 online social networks
43 paper
44 people
45 personal computer
46 previous studies
47 real-world web forum comment data
48 relation
49 reply
50 semantic transferability
51 sequential layout
52 similarity
53 social networks
54 structure
55 study
56 success
57 text similarity
58 time elapses
59 transferability
60 web forum comment data
61 schema:name Learning the Structures of Online Asynchronous Conversations
62 schema:pagination 19-34
63 schema:productId N26ba015ce8a04c49a48166ade6ee1414
64 N27020ef1255f4101a39df2b36984f96a
65 schema:publisher N2e80cb946d0947fe9006e4832e3daf0b
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084681752
67 https://doi.org/10.1007/978-3-319-55753-3_2
68 schema:sdDatePublished 2022-01-01T19:26
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N50eb286c1b624c64bf73462a67ad3640
71 schema:url https://doi.org/10.1007/978-3-319-55753-3_2
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N26ba015ce8a04c49a48166ade6ee1414 schema:name dimensions_id
76 schema:value pub.1084681752
77 rdf:type schema:PropertyValue
78 N27020ef1255f4101a39df2b36984f96a schema:name doi
79 schema:value 10.1007/978-3-319-55753-3_2
80 rdf:type schema:PropertyValue
81 N2e80cb946d0947fe9006e4832e3daf0b schema:name Springer Nature
82 rdf:type schema:Organisation
83 N376f259f52d1499dad0b1595ac8d20cb schema:familyName Candan
84 schema:givenName Selçuk
85 rdf:type schema:Person
86 N50eb286c1b624c64bf73462a67ad3640 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N52c3e85e1ccf4adcb99c156060628137 schema:familyName Chen
89 schema:givenName Lei
90 rdf:type schema:Person
91 N545ac2f8fc974712acf426ed8ebebc28 rdf:first sg:person.013632154273.13
92 rdf:rest Nb3d6696f8dc54b7489a7925640483533
93 N58b84e86ed614bd7920fd920eaa25f7e schema:isbn 978-3-319-55752-6
94 978-3-319-55753-3
95 schema:name Database Systems for Advanced Applications
96 rdf:type schema:Book
97 N5f758f358cef42c8a396815b74a78295 rdf:first sg:person.015256234023.91
98 rdf:rest N706c7119b87d4afeace57c60d763c7b9
99 N706c7119b87d4afeace57c60d763c7b9 rdf:first sg:person.011533665437.99
100 rdf:rest Ne4ae0f82b35d494b96cb48f22de9464e
101 N825541545a7b4e748d959358590939a9 schema:familyName Pedersen
102 schema:givenName Torben Bach
103 rdf:type schema:Person
104 N83776d8939ac4f2a84ccc97e65be81f1 rdf:first N376f259f52d1499dad0b1595ac8d20cb
105 rdf:rest Nb46f545b1f0e4a6e9d51d646557c8924
106 Na7f5686b5b924f16a2291e8f491ea380 schema:affiliation grid-institutes:grid.12527.33
107 schema:familyName Lin
108 schema:givenName Heran
109 rdf:type schema:Person
110 Nafbce627e76f4477a1e794a9d7e4791e schema:familyName Hua
111 schema:givenName Wen
112 rdf:type schema:Person
113 Nb3d6696f8dc54b7489a7925640483533 rdf:first sg:person.013363323156.71
114 rdf:rest Ne39643e165cf4118b06494a193e1ef08
115 Nb46f545b1f0e4a6e9d51d646557c8924 rdf:first N52c3e85e1ccf4adcb99c156060628137
116 rdf:rest Nc8913ee5152f4c69ac47fa96921555f2
117 Nc8913ee5152f4c69ac47fa96921555f2 rdf:first N825541545a7b4e748d959358590939a9
118 rdf:rest Nfff9827baaad4e0bbbc71bf078839ff2
119 Ne39643e165cf4118b06494a193e1ef08 rdf:first sg:person.012303351315.43
120 rdf:rest rdf:nil
121 Ne4ae0f82b35d494b96cb48f22de9464e rdf:first Na7f5686b5b924f16a2291e8f491ea380
122 rdf:rest N545ac2f8fc974712acf426ed8ebebc28
123 Nf1e010b346f1453c897160772dd20377 rdf:first Nafbce627e76f4477a1e794a9d7e4791e
124 rdf:rest rdf:nil
125 Nf9199f260c9f43e9bb93413b9c70aae0 schema:familyName Chang
126 schema:givenName Lijun
127 rdf:type schema:Person
128 Nfff9827baaad4e0bbbc71bf078839ff2 rdf:first Nf9199f260c9f43e9bb93413b9c70aae0
129 rdf:rest Nf1e010b346f1453c897160772dd20377
130 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
131 schema:name Information and Computing Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
134 schema:name Information Systems
135 rdf:type schema:DefinedTerm
136 sg:person.011533665437.99 schema:affiliation grid-institutes:grid.12527.33
137 schema:familyName Wang
138 schema:givenName Chaokun
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011533665437.99
140 rdf:type schema:Person
141 sg:person.012303351315.43 schema:affiliation grid-institutes:grid.12527.33
142 schema:familyName Wang
143 schema:givenName Jianmin
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43
145 rdf:type schema:Person
146 sg:person.013363323156.71 schema:affiliation grid-institutes:grid.256304.6
147 schema:familyName Cai
148 schema:givenName Zhipeng
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013363323156.71
150 rdf:type schema:Person
151 sg:person.013632154273.13 schema:affiliation grid-institutes:grid.458480.5
152 schema:familyName Wang
153 schema:givenName Weiping
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013632154273.13
155 rdf:type schema:Person
156 sg:person.015256234023.91 schema:affiliation grid-institutes:grid.12527.33
157 schema:familyName Chen
158 schema:givenName Jun
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015256234023.91
160 rdf:type schema:Person
161 grid-institutes:grid.12527.33 schema:alternateName School of Software, Tsinghua University, 100084, Beijing, China
162 schema:name School of Software, Tsinghua University, 100084, Beijing, China
163 rdf:type schema:Organization
164 grid-institutes:grid.256304.6 schema:alternateName Department of Computer Science, Georgia State University, 30302, Atlanta, Georgia, USA
165 schema:name Department of Computer Science, Georgia State University, 30302, Atlanta, Georgia, USA
166 rdf:type schema:Organization
167 grid-institutes:grid.458480.5 schema:alternateName Institute of Information Engineering, CAS, 100093, Beijing, China
168 schema:name Institute of Information Engineering, CAS, 100093, Beijing, China
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...