On Multiplicative Independent Bases for Canonical Number Systems in Cyclotomic Number Fields View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

Manfred G. Madritsch , Paul Surer , Volker Ziegler

ABSTRACT

In the present paper we are interested in number systems in the ring of integers of cyclotomic number fields in order to obtain a result equivalent to Cobham’s theorem. For this reason we first search for potential bases. This is done in a very general way in terms of canonical number systems. In a second step we analyse pairs of bases in view of their multiplicative independence. In the last part we state an appropriate variant of Cobham’s theorem. More... »

PAGES

313-332

Book

TITLE

Number Theory – Diophantine Problems, Uniform Distribution and Applications

ISBN

978-3-319-55356-6
978-3-319-55357-3

From Grant

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-55357-3_16

DOI

http://dx.doi.org/10.1007/978-3-319-55357-3_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085708809


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institut Elie Cartan de Lorraine, Universit\u00e9 de Lorraine, UMR 7502", 
            "Institut Elie Cartan de Lorraine, CNRS, UMR 7502"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Madritsch", 
        "givenName": "Manfred G.", 
        "id": "sg:person.014037344412.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014037344412.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institut f\u00fcr Mathematik, Universti\u00e4t f\u00fcr Bodenkultur (BOKU)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Surer", 
        "givenName": "Paul", 
        "id": "sg:person.012143205655.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012143205655.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute of Mathematics, University of Salzburg"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ziegler", 
        "givenName": "Volker", 
        "id": "sg:person.010167602321.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010167602321.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/367177.367233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014731779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/321264.321274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017436510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3975(01)00103-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024599009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-11569-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039032746", 
          "https://doi.org/10.1007/978-3-662-11569-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-11569-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039032746", 
          "https://doi.org/10.1007/978-3-662-11569-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9783110865950.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041785286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s1793042114500389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063020126"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "In the present paper we are interested in number systems in the ring of integers of cyclotomic number fields in order to obtain a result equivalent to Cobham\u2019s theorem. For this reason we first search for potential bases. This is done in a very general way in terms of canonical number systems. In a second step we analyse pairs of bases in view of their multiplicative independence. In the last part we state an appropriate variant of Cobham\u2019s theorem.", 
    "editor": [
      {
        "familyName": "Elsholtz", 
        "givenName": "Christian", 
        "type": "Person"
      }, 
      {
        "familyName": "Grabner", 
        "givenName": "Peter", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-55357-3_16", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6207690", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-319-55356-6", 
        "978-3-319-55357-3"
      ], 
      "name": "Number Theory \u2013 Diophantine Problems, Uniform Distribution and Applications", 
      "type": "Book"
    }, 
    "name": "On Multiplicative Independent Bases for Canonical Number Systems in Cyclotomic Number Fields", 
    "pagination": "313-332", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-55357-3_16"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e01034c149fcc292d5f7bb4919de40bf4a9c600d188a4430b8362b5b8d87a17e"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085708809"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-55357-3_16", 
      "https://app.dimensions.ai/details/publication/pub.1085708809"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000279.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-55357-3_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-55357-3_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-55357-3_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-55357-3_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-55357-3_16'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-55357-3_16 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3db8b2abe921445f88a5ba2280dca10c
4 schema:citation sg:pub.10.1007/978-3-662-11569-5
5 https://doi.org/10.1016/s0304-3975(01)00103-7
6 https://doi.org/10.1142/s1793042114500389
7 https://doi.org/10.1145/321264.321274
8 https://doi.org/10.1145/367177.367233
9 https://doi.org/10.1515/9783110865950.31
10 schema:datePublished 2017
11 schema:datePublishedReg 2017-01-01
12 schema:description In the present paper we are interested in number systems in the ring of integers of cyclotomic number fields in order to obtain a result equivalent to Cobham’s theorem. For this reason we first search for potential bases. This is done in a very general way in terms of canonical number systems. In a second step we analyse pairs of bases in view of their multiplicative independence. In the last part we state an appropriate variant of Cobham’s theorem.
13 schema:editor Nd2446951d90043459f1217ae0c8168e7
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N7c4ec6676b484f31b4147559c31faa24
18 schema:name On Multiplicative Independent Bases for Canonical Number Systems in Cyclotomic Number Fields
19 schema:pagination 313-332
20 schema:productId N1da49c64133a4d9893cffd2d3b812dbb
21 N4eccbf522ced477c81a501a94b523aa5
22 Nb8b1382aceb2407bba04f00ab9d303f7
23 schema:publisher N0e8ffd649bd844acaa34b7263d9e5c1b
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085708809
25 https://doi.org/10.1007/978-3-319-55357-3_16
26 schema:sdDatePublished 2019-04-15T14:29
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N1d0243ff556c4cd69528309892bcf52a
29 schema:url http://link.springer.com/10.1007/978-3-319-55357-3_16
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N0a5551ba290b479896af05e3db106db1 schema:name Institut Elie Cartan de Lorraine, CNRS, UMR 7502
34 Institut Elie Cartan de Lorraine, Université de Lorraine, UMR 7502
35 rdf:type schema:Organization
36 N0e8ffd649bd844acaa34b7263d9e5c1b schema:location Cham
37 schema:name Springer International Publishing
38 rdf:type schema:Organisation
39 N1d0243ff556c4cd69528309892bcf52a schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N1da49c64133a4d9893cffd2d3b812dbb schema:name dimensions_id
42 schema:value pub.1085708809
43 rdf:type schema:PropertyValue
44 N3db8b2abe921445f88a5ba2280dca10c rdf:first sg:person.014037344412.69
45 rdf:rest Nc25cbb3088a64fe6bfd15587172bcda8
46 N4eccbf522ced477c81a501a94b523aa5 schema:name readcube_id
47 schema:value e01034c149fcc292d5f7bb4919de40bf4a9c600d188a4430b8362b5b8d87a17e
48 rdf:type schema:PropertyValue
49 N653ff8b168624484bca21b96d49b4542 rdf:first sg:person.010167602321.26
50 rdf:rest rdf:nil
51 N7b99a7785611436e93267d07506d20bc schema:name Institute of Mathematics, University of Salzburg
52 rdf:type schema:Organization
53 N7c4ec6676b484f31b4147559c31faa24 schema:isbn 978-3-319-55356-6
54 978-3-319-55357-3
55 schema:name Number Theory – Diophantine Problems, Uniform Distribution and Applications
56 rdf:type schema:Book
57 N9e2fd67fda384bfa99b8ee3e5063971c rdf:first Nb58cea7bea7e4a338d50f9237015da40
58 rdf:rest rdf:nil
59 Nb58cea7bea7e4a338d50f9237015da40 schema:familyName Grabner
60 schema:givenName Peter
61 rdf:type schema:Person
62 Nb8b1382aceb2407bba04f00ab9d303f7 schema:name doi
63 schema:value 10.1007/978-3-319-55357-3_16
64 rdf:type schema:PropertyValue
65 Nc25cbb3088a64fe6bfd15587172bcda8 rdf:first sg:person.012143205655.07
66 rdf:rest N653ff8b168624484bca21b96d49b4542
67 Nce93cdd6a6444b14b47ecfc208bdb563 schema:familyName Elsholtz
68 schema:givenName Christian
69 rdf:type schema:Person
70 Nd2446951d90043459f1217ae0c8168e7 rdf:first Nce93cdd6a6444b14b47ecfc208bdb563
71 rdf:rest N9e2fd67fda384bfa99b8ee3e5063971c
72 Nd383b98a852c40289044225495dd143b schema:name Institut für Mathematik, Universtiät für Bodenkultur (BOKU)
73 rdf:type schema:Organization
74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
75 schema:name Mathematical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
78 schema:name Pure Mathematics
79 rdf:type schema:DefinedTerm
80 sg:grant.6207690 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-55357-3_16
81 rdf:type schema:MonetaryGrant
82 sg:person.010167602321.26 schema:affiliation N7b99a7785611436e93267d07506d20bc
83 schema:familyName Ziegler
84 schema:givenName Volker
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010167602321.26
86 rdf:type schema:Person
87 sg:person.012143205655.07 schema:affiliation Nd383b98a852c40289044225495dd143b
88 schema:familyName Surer
89 schema:givenName Paul
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012143205655.07
91 rdf:type schema:Person
92 sg:person.014037344412.69 schema:affiliation N0a5551ba290b479896af05e3db106db1
93 schema:familyName Madritsch
94 schema:givenName Manfred G.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014037344412.69
96 rdf:type schema:Person
97 sg:pub.10.1007/978-3-662-11569-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039032746
98 https://doi.org/10.1007/978-3-662-11569-5
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/s0304-3975(01)00103-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024599009
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1142/s1793042114500389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063020126
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1145/321264.321274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017436510
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1145/367177.367233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014731779
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1515/9783110865950.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041785286
109 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...