Ontology type: schema:Chapter Open Access: True
2017-05-30
AUTHORSShigeki Akiyama , Jan-Hendrik Evertse , Attila Pethő
ABSTRACTA nearly linear recurrence sequence (nlrs) is a complex sequence (an) with the property that there exist complex numbers A0,…, Ad−1 such that the sequence an+d+Ad−1an+d−1+⋯+A0ann=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\big(a_{n+d} + A_{d-1}a_{n+d-1} + \cdots + A_{0}a_{n}\big)_{n=0}^{\infty }$$ \end{document} is bounded. We give an asymptotic Binet-type formula for such sequences. We compare (an) with a natural linear recurrence sequence (lrs) (ãn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\tilde{a}_{n})$$ \end{document} associated with it and prove under certain assumptions that the difference sequence (an−ãn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(a_{n} -\tilde{ a}_{n})$$ \end{document} tends to infinity. We show that several finiteness results for lrs, in particular the Skolem-Mahler-Lech theorem and results on common terms of two lrs, are not valid anymore for nlrs with integer terms. Our main tool in these investigations is an observation that lrs with transcendental terms may have large fluctuations, quite different from lrs with algebraic terms. On the other hand, we show under certain hypotheses that though there may be infinitely many of them, the common terms of two nlrs are very sparse. The proof of this result combines our Binet-type formula with a Baker type estimate for logarithmic forms. More... »
PAGES1-24
Number Theory – Diophantine Problems, Uniform Distribution and Applications
ISBN
978-3-319-55356-6
978-3-319-55357-3
http://scigraph.springernature.com/pub.10.1007/978-3-319-55357-3_1
DOIhttp://dx.doi.org/10.1007/978-3-319-55357-3_1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1085706155
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Mathematics, University of Tsukuba, 1-1-1 Tennodai, 350-0006, Tsukuba, Ibaraki, Japan",
"id": "http://www.grid.ac/institutes/grid.20515.33",
"name": [
"Institute of Mathematics, University of Tsukuba, 1-1-1 Tennodai, 350-0006, Tsukuba, Ibaraki, Japan"
],
"type": "Organization"
},
"familyName": "Akiyama",
"givenName": "Shigeki",
"id": "sg:person.011153327405.03",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Mathematical Institute, Leiden University, P.O. Box 9512, 2300, RA Leiden, The Netherlands",
"id": "http://www.grid.ac/institutes/grid.5132.5",
"name": [
"Mathematical Institute, Leiden University, P.O. Box 9512, 2300, RA Leiden, The Netherlands"
],
"type": "Organization"
},
"familyName": "Evertse",
"givenName": "Jan-Hendrik",
"id": "sg:person.015165732215.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015165732215.42"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science, University of Debrecen, P.O. Box 12, H-4010, Debrecen, Hungary",
"id": "http://www.grid.ac/institutes/grid.7122.6",
"name": [
"Department of Computer Science, University of Debrecen, P.O. Box 12, H-4010, Debrecen, Hungary"
],
"type": "Organization"
},
"familyName": "Peth\u0151",
"givenName": "Attila",
"id": "sg:person.013334020373.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013334020373.46"
],
"type": "Person"
}
],
"datePublished": "2017-05-30",
"datePublishedReg": "2017-05-30",
"description": "A nearly linear recurrence sequence (nlrs) is a complex sequence (an) with the property that there exist complex numbers A0,\u2026, Ad\u22121 such that the sequence an+d+Ad\u22121an+d\u22121+\u22ef+A0ann=0\u221e\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\big(a_{n+d} + A_{d-1}a_{n+d-1} + \\cdots + A_{0}a_{n}\\big)_{n=0}^{\\infty }$$\n\\end{document} is bounded. We give an asymptotic Binet-type formula for such sequences. We compare (an) with a natural linear recurrence sequence (lrs) (\u00e3n)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$(\\tilde{a}_{n})$$\n\\end{document} associated with it and prove under certain assumptions that the difference sequence (an\u2212\u00e3n)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$(a_{n} -\\tilde{ a}_{n})$$\n\\end{document} tends to infinity. We show that several finiteness results for lrs, in particular the Skolem-Mahler-Lech theorem and results on common terms of two lrs, are not valid anymore for nlrs with integer terms. Our main tool in these investigations is an observation that lrs with transcendental terms may have large fluctuations, quite different from lrs with algebraic terms. On the other hand, we show under certain hypotheses that though there may be infinitely many of them, the common terms of two nlrs are very sparse. The proof of this result combines our Binet-type formula with a Baker type estimate for logarithmic forms.",
"editor": [
{
"familyName": "Elsholtz",
"givenName": "Christian",
"type": "Person"
},
{
"familyName": "Grabner",
"givenName": "Peter",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-55357-3_1",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-319-55356-6",
"978-3-319-55357-3"
],
"name": "Number Theory \u2013 Diophantine Problems, Uniform Distribution and Applications",
"type": "Book"
},
"keywords": [
"linear recurrence sequences",
"recurrence sequences",
"Skolem\u2013Mahler",
"Lech theorem",
"algebraic terms",
"finiteness results",
"transcendental terms",
"integer terms",
"type estimates",
"difference sequence",
"main tool",
"certain assumptions",
"certain hypotheses",
"logarithmic form",
"large fluctuations",
"formula",
"such sequences",
"theorem",
"infinity",
"terms",
"fluctuations",
"proof",
"assumption",
"complex sequence",
"A0",
"estimates",
"results",
"common terms",
"properties",
"sequence",
"LR",
"tool",
"form",
"observations",
"investigation",
"hand",
"hypothesis",
"NLR"
],
"name": "On Nearly Linear Recurrence Sequences",
"pagination": "1-24",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1085706155"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-55357-3_1"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-55357-3_1",
"https://app.dimensions.ai/details/publication/pub.1085706155"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:55",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_68.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-55357-3_1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-55357-3_1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-55357-3_1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-55357-3_1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-55357-3_1'
This table displays all metadata directly associated to this object as RDF triples.
123 TRIPLES
23 PREDICATES
63 URIs
56 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-55357-3_1 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0802 |
3 | ″ | schema:author | N004cae4016904b5db28ee7416f5f9363 |
4 | ″ | schema:datePublished | 2017-05-30 |
5 | ″ | schema:datePublishedReg | 2017-05-30 |
6 | ″ | schema:description | A nearly linear recurrence sequence (nlrs) is a complex sequence (an) with the property that there exist complex numbers A0,…, Ad−1 such that the sequence an+d+Ad−1an+d−1+⋯+A0ann=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\big(a_{n+d} + A_{d-1}a_{n+d-1} + \cdots + A_{0}a_{n}\big)_{n=0}^{\infty }$$ \end{document} is bounded. We give an asymptotic Binet-type formula for such sequences. We compare (an) with a natural linear recurrence sequence (lrs) (ãn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\tilde{a}_{n})$$ \end{document} associated with it and prove under certain assumptions that the difference sequence (an−ãn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(a_{n} -\tilde{ a}_{n})$$ \end{document} tends to infinity. We show that several finiteness results for lrs, in particular the Skolem-Mahler-Lech theorem and results on common terms of two lrs, are not valid anymore for nlrs with integer terms. Our main tool in these investigations is an observation that lrs with transcendental terms may have large fluctuations, quite different from lrs with algebraic terms. On the other hand, we show under certain hypotheses that though there may be infinitely many of them, the common terms of two nlrs are very sparse. The proof of this result combines our Binet-type formula with a Baker type estimate for logarithmic forms. |
7 | ″ | schema:editor | N9c4e089e15504736a8ae4c63645009c9 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | N82e1e7ca58304dc5aaeabe0ac62f6c6b |
12 | ″ | schema:keywords | A0 |
13 | ″ | ″ | LR |
14 | ″ | ″ | Lech theorem |
15 | ″ | ″ | NLR |
16 | ″ | ″ | Skolem–Mahler |
17 | ″ | ″ | algebraic terms |
18 | ″ | ″ | assumption |
19 | ″ | ″ | certain assumptions |
20 | ″ | ″ | certain hypotheses |
21 | ″ | ″ | common terms |
22 | ″ | ″ | complex sequence |
23 | ″ | ″ | difference sequence |
24 | ″ | ″ | estimates |
25 | ″ | ″ | finiteness results |
26 | ″ | ″ | fluctuations |
27 | ″ | ″ | form |
28 | ″ | ″ | formula |
29 | ″ | ″ | hand |
30 | ″ | ″ | hypothesis |
31 | ″ | ″ | infinity |
32 | ″ | ″ | integer terms |
33 | ″ | ″ | investigation |
34 | ″ | ″ | large fluctuations |
35 | ″ | ″ | linear recurrence sequences |
36 | ″ | ″ | logarithmic form |
37 | ″ | ″ | main tool |
38 | ″ | ″ | observations |
39 | ″ | ″ | proof |
40 | ″ | ″ | properties |
41 | ″ | ″ | recurrence sequences |
42 | ″ | ″ | results |
43 | ″ | ″ | sequence |
44 | ″ | ″ | such sequences |
45 | ″ | ″ | terms |
46 | ″ | ″ | theorem |
47 | ″ | ″ | tool |
48 | ″ | ″ | transcendental terms |
49 | ″ | ″ | type estimates |
50 | ″ | schema:name | On Nearly Linear Recurrence Sequences |
51 | ″ | schema:pagination | 1-24 |
52 | ″ | schema:productId | N5e7c184dc40541b998f8f4cd4996e6bc |
53 | ″ | ″ | Nef271f005af842888e851355dff09a70 |
54 | ″ | schema:publisher | N1d01a9feefa64fb7816b1bb5188ff029 |
55 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1085706155 |
56 | ″ | ″ | https://doi.org/10.1007/978-3-319-55357-3_1 |
57 | ″ | schema:sdDatePublished | 2022-05-10T10:55 |
58 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
59 | ″ | schema:sdPublisher | N27e998dd6a044fc7b58599bbe4cce5a0 |
60 | ″ | schema:url | https://doi.org/10.1007/978-3-319-55357-3_1 |
61 | ″ | sgo:license | sg:explorer/license/ |
62 | ″ | sgo:sdDataset | chapters |
63 | ″ | rdf:type | schema:Chapter |
64 | N004cae4016904b5db28ee7416f5f9363 | rdf:first | sg:person.011153327405.03 |
65 | ″ | rdf:rest | N5fd8447bff0f45cfb906725818c2ca57 |
66 | N1d01a9feefa64fb7816b1bb5188ff029 | schema:name | Springer Nature |
67 | ″ | rdf:type | schema:Organisation |
68 | N2096c17894fc49e798a54644628bfc16 | rdf:first | sg:person.013334020373.46 |
69 | ″ | rdf:rest | rdf:nil |
70 | N27e998dd6a044fc7b58599bbe4cce5a0 | schema:name | Springer Nature - SN SciGraph project |
71 | ″ | rdf:type | schema:Organization |
72 | N4d2710da487d404ba53290f24ecd3803 | schema:familyName | Elsholtz |
73 | ″ | schema:givenName | Christian |
74 | ″ | rdf:type | schema:Person |
75 | N5e7c184dc40541b998f8f4cd4996e6bc | schema:name | doi |
76 | ″ | schema:value | 10.1007/978-3-319-55357-3_1 |
77 | ″ | rdf:type | schema:PropertyValue |
78 | N5fd8447bff0f45cfb906725818c2ca57 | rdf:first | sg:person.015165732215.42 |
79 | ″ | rdf:rest | N2096c17894fc49e798a54644628bfc16 |
80 | N82e1e7ca58304dc5aaeabe0ac62f6c6b | schema:isbn | 978-3-319-55356-6 |
81 | ″ | ″ | 978-3-319-55357-3 |
82 | ″ | schema:name | Number Theory – Diophantine Problems, Uniform Distribution and Applications |
83 | ″ | rdf:type | schema:Book |
84 | N85d60728a9f044638e32593f4d6c5c7f | schema:familyName | Grabner |
85 | ″ | schema:givenName | Peter |
86 | ″ | rdf:type | schema:Person |
87 | N8c470964cfd44cfdba1f91428e4ea0b7 | rdf:first | N85d60728a9f044638e32593f4d6c5c7f |
88 | ″ | rdf:rest | rdf:nil |
89 | N9c4e089e15504736a8ae4c63645009c9 | rdf:first | N4d2710da487d404ba53290f24ecd3803 |
90 | ″ | rdf:rest | N8c470964cfd44cfdba1f91428e4ea0b7 |
91 | Nef271f005af842888e851355dff09a70 | schema:name | dimensions_id |
92 | ″ | schema:value | pub.1085706155 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
95 | ″ | schema:name | Information and Computing Sciences |
96 | ″ | rdf:type | schema:DefinedTerm |
97 | anzsrc-for:0802 | schema:inDefinedTermSet | anzsrc-for: |
98 | ″ | schema:name | Computation Theory and Mathematics |
99 | ″ | rdf:type | schema:DefinedTerm |
100 | sg:person.011153327405.03 | schema:affiliation | grid-institutes:grid.20515.33 |
101 | ″ | schema:familyName | Akiyama |
102 | ″ | schema:givenName | Shigeki |
103 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03 |
104 | ″ | rdf:type | schema:Person |
105 | sg:person.013334020373.46 | schema:affiliation | grid-institutes:grid.7122.6 |
106 | ″ | schema:familyName | Pethő |
107 | ″ | schema:givenName | Attila |
108 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013334020373.46 |
109 | ″ | rdf:type | schema:Person |
110 | sg:person.015165732215.42 | schema:affiliation | grid-institutes:grid.5132.5 |
111 | ″ | schema:familyName | Evertse |
112 | ″ | schema:givenName | Jan-Hendrik |
113 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015165732215.42 |
114 | ″ | rdf:type | schema:Person |
115 | grid-institutes:grid.20515.33 | schema:alternateName | Institute of Mathematics, University of Tsukuba, 1-1-1 Tennodai, 350-0006, Tsukuba, Ibaraki, Japan |
116 | ″ | schema:name | Institute of Mathematics, University of Tsukuba, 1-1-1 Tennodai, 350-0006, Tsukuba, Ibaraki, Japan |
117 | ″ | rdf:type | schema:Organization |
118 | grid-institutes:grid.5132.5 | schema:alternateName | Mathematical Institute, Leiden University, P.O. Box 9512, 2300, RA Leiden, The Netherlands |
119 | ″ | schema:name | Mathematical Institute, Leiden University, P.O. Box 9512, 2300, RA Leiden, The Netherlands |
120 | ″ | rdf:type | schema:Organization |
121 | grid-institutes:grid.7122.6 | schema:alternateName | Department of Computer Science, University of Debrecen, P.O. Box 12, H-4010, Debrecen, Hungary |
122 | ″ | schema:name | Department of Computer Science, University of Debrecen, P.O. Box 12, H-4010, Debrecen, Hungary |
123 | ″ | rdf:type | schema:Organization |