Voice Restoration After Laryngectomy Based on Magnetic Sensing of Articulator Movement and Statistical Articulation-to-Speech Conversion View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2017

AUTHORS

Jose A. Gonzalez , Lam A. Cheah , James M. Gilbert , Jie Bai , Stephen R. Ell , Phil D. Green , Roger K. Moore

ABSTRACT

In this work, we present a silent speech system that is able to generate audible speech from captured movement of speech articulators. Our goal is to help laryngectomy patients, i.e. patients who have lost the ability to speak following surgical removal of the larynx most frequently due to cancer, to recover their voice. In our system, we use a magnetic sensing technique known as Permanent Magnet Articulography (PMA) to capture the movement of the lips and tongue by attaching small magnets to the articulators and monitoring the magnetic field changes with sensors close to the mouth. The captured sensor data is then transformed into a sequence of speech parameter vectors from which a time-domain speech signal is finally synthesised. The key component of our system is a parametric transformation which represents the PMA-to-speech mapping. Here, this transformation takes the form of a statistical model (a mixture of factor analysers, more specifically) whose parameters are learned from simultaneous recordings of PMA and speech signals acquired before laryngectomy. To evaluate the performance of our system on voice reconstruction, we recorded two PMA-and-speech databases with different phonetic complexity for several non-impaired subjects. Results show that our system is able to synthesise speech that sounds as the original voice of the subject and also is intelligible. However, more work still need to be done to achieve a consistent synthesis for phonetically-rich vocabularies. More... »

PAGES

295-316

References to SciGraph publications

  • 2010-04. Social withdrawal after laryngectomy in EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY
  • Book

    TITLE

    Biomedical Engineering Systems and Technologies

    ISBN

    978-3-319-54716-9
    978-3-319-54717-6

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-54717-6_17

    DOI

    http://dx.doi.org/10.1007/978-3-319-54717-6_17

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084723328


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Electrical and Electronic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Sheffield", 
              "id": "https://www.grid.ac/institutes/grid.11835.3e", 
              "name": [
                "Department of Computer Science University of Sheffield Sheffield UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gonzalez", 
            "givenName": "Jose A.", 
            "id": "sg:person.010477131004.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010477131004.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Hull", 
              "id": "https://www.grid.ac/institutes/grid.9481.4", 
              "name": [
                "School of Engineering University of Hull Kingston upon Hull UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cheah", 
            "givenName": "Lam A.", 
            "id": "sg:person.014026356107.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014026356107.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Hull", 
              "id": "https://www.grid.ac/institutes/grid.9481.4", 
              "name": [
                "School of Engineering University of Hull Kingston upon Hull UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gilbert", 
            "givenName": "James M.", 
            "id": "sg:person.01254544377.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254544377.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Hull", 
              "id": "https://www.grid.ac/institutes/grid.9481.4", 
              "name": [
                "School of Engineering University of Hull Kingston upon Hull UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bai", 
            "givenName": "Jie", 
            "id": "sg:person.015570370367.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015570370367.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hull and East Yorkshire Hospitals NHS Trust", 
              "id": "https://www.grid.ac/institutes/grid.417700.5", 
              "name": [
                "Hull and East Yorkshire Hospitals Trust, Castle Hill Hospital Cottingham UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ell", 
            "givenName": "Stephen R.", 
            "id": "sg:person.01345774160.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345774160.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Sheffield", 
              "id": "https://www.grid.ac/institutes/grid.11835.3e", 
              "name": [
                "Department of Computer Science University of Sheffield Sheffield UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Green", 
            "givenName": "Phil D.", 
            "id": "sg:person.0712117224.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712117224.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Sheffield", 
              "id": "https://www.grid.ac/institutes/grid.11835.3e", 
              "name": [
                "Department of Computer Science University of Sheffield Sheffield UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moore", 
            "givenName": "Roger K.", 
            "id": "sg:person.012553154205.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012553154205.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.specom.2009.11.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003025659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00405-009-1087-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007938353", 
              "https://doi.org/10.1007/s00405-009-1087-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00405-009-1087-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007938353", 
              "https://doi.org/10.1007/s00405-009-1087-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00405-009-1087-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007938353", 
              "https://doi.org/10.1007/s00405-009-1087-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.specom.2009.12.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007983657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.specom.2012.02.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010068452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0169-7439(93)85002-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010576244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1590/s1807-59322005000200010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011794906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-6393(82)90017-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013069410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-6393(82)90017-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013069410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.specom.2007.09.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017871071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/07434610600650276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020738081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.medengphy.2010.08.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021064141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fnins.2015.00217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022155844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5772/16935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024780362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.csl.2015.03.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025403158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.csl.2015.03.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025403158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.medengphy.2007.05.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034071207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.specom.2009.04.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035380827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3109/00016489409126125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037688284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2273.1995.tb01601.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046462893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.specom.2009.08.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047966825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.csl.2016.02.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051535474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022215100133304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051919926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.specom.2011.07.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053477171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tasl.2007.907344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061516075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tassp.1978.1163055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061518392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.2014.2319000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061529570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2007.1167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsa.2005.858052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061786438"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1121/1.381848", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062333143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1192/bjp.163.2.173", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064171795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icassp.1984.1172716", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086214699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icassp.1992.225953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086316676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/pacrim.1993.407206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086363651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icassp.2009.4960478", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093324913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2009.5206580", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093837804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5220/0005354601090116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099504265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5220/0005824501080116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099546554"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017", 
        "datePublishedReg": "2017-01-01", 
        "description": "In this work, we present a silent speech system that is able to generate audible speech from captured movement of speech articulators. Our goal is to help laryngectomy patients, i.e. patients who have lost the ability to speak following surgical removal of the larynx most frequently due to cancer, to recover their voice. In our system, we use a magnetic sensing technique known as Permanent Magnet Articulography (PMA) to capture the movement of the lips and tongue by attaching small magnets to the articulators and monitoring the magnetic field changes with sensors close to the mouth. The captured sensor data is then transformed into a sequence of speech parameter vectors from which a time-domain speech signal is finally synthesised. The key component of our system is a parametric transformation which represents the PMA-to-speech mapping. Here, this transformation takes the form of a statistical model (a mixture of factor analysers, more specifically) whose parameters are learned from simultaneous recordings of PMA and speech signals acquired before laryngectomy. To evaluate the performance of our system on voice reconstruction, we recorded two PMA-and-speech databases with different phonetic complexity for several non-impaired subjects. Results show that our system is able to synthesise speech that sounds as the original voice of the subject and also is intelligible. However, more work still need to be done to achieve a consistent synthesis for phonetically-rich vocabularies.", 
        "editor": [
          {
            "familyName": "Fred", 
            "givenName": "Ana", 
            "type": "Person"
          }, 
          {
            "familyName": "Gamboa", 
            "givenName": "Hugo", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-54717-6_17", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-319-54716-9", 
            "978-3-319-54717-6"
          ], 
          "name": "Biomedical Engineering Systems and Technologies", 
          "type": "Book"
        }, 
        "name": "Voice Restoration After Laryngectomy Based on Magnetic Sensing of Articulator Movement and Statistical Articulation-to-Speech Conversion", 
        "pagination": "295-316", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-54717-6_17"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c8b725c96a2ea08de747d516a05b8a99769aad601f85916d748e55a4a6c14304"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084723328"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-54717-6_17", 
          "https://app.dimensions.ai/details/publication/pub.1084723328"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T12:41", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000331.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-54717-6_17"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-54717-6_17'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-54717-6_17'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-54717-6_17'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-54717-6_17'


     

    This table displays all metadata directly associated to this object as RDF triples.

    224 TRIPLES      23 PREDICATES      62 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-54717-6_17 schema:about anzsrc-for:09
    2 anzsrc-for:0906
    3 schema:author N8a7cb5cdf09446d9b2e0efd72edd2645
    4 schema:citation sg:pub.10.1007/s00405-009-1087-4
    5 https://doi.org/10.1016/0167-6393(82)90017-6
    6 https://doi.org/10.1016/0169-7439(93)85002-x
    7 https://doi.org/10.1016/j.csl.2015.03.005
    8 https://doi.org/10.1016/j.csl.2016.02.002
    9 https://doi.org/10.1016/j.medengphy.2007.05.003
    10 https://doi.org/10.1016/j.medengphy.2010.08.011
    11 https://doi.org/10.1016/j.specom.2007.09.001
    12 https://doi.org/10.1016/j.specom.2009.04.004
    13 https://doi.org/10.1016/j.specom.2009.08.002
    14 https://doi.org/10.1016/j.specom.2009.11.004
    15 https://doi.org/10.1016/j.specom.2009.12.002
    16 https://doi.org/10.1016/j.specom.2011.07.007
    17 https://doi.org/10.1016/j.specom.2012.02.001
    18 https://doi.org/10.1017/s0022215100133304
    19 https://doi.org/10.1080/07434610600650276
    20 https://doi.org/10.1109/cvpr.2009.5206580
    21 https://doi.org/10.1109/icassp.1984.1172716
    22 https://doi.org/10.1109/icassp.1992.225953
    23 https://doi.org/10.1109/icassp.2009.4960478
    24 https://doi.org/10.1109/pacrim.1993.407206
    25 https://doi.org/10.1109/tasl.2007.907344
    26 https://doi.org/10.1109/tassp.1978.1163055
    27 https://doi.org/10.1109/tbme.2014.2319000
    28 https://doi.org/10.1109/tpami.2007.1167
    29 https://doi.org/10.1109/tsa.2005.858052
    30 https://doi.org/10.1111/j.1365-2273.1995.tb01601.x
    31 https://doi.org/10.1121/1.381848
    32 https://doi.org/10.1192/bjp.163.2.173
    33 https://doi.org/10.1590/s1807-59322005000200010
    34 https://doi.org/10.3109/00016489409126125
    35 https://doi.org/10.3389/fnins.2015.00217
    36 https://doi.org/10.5220/0005354601090116
    37 https://doi.org/10.5220/0005824501080116
    38 https://doi.org/10.5772/16935
    39 schema:datePublished 2017
    40 schema:datePublishedReg 2017-01-01
    41 schema:description In this work, we present a silent speech system that is able to generate audible speech from captured movement of speech articulators. Our goal is to help laryngectomy patients, i.e. patients who have lost the ability to speak following surgical removal of the larynx most frequently due to cancer, to recover their voice. In our system, we use a magnetic sensing technique known as Permanent Magnet Articulography (PMA) to capture the movement of the lips and tongue by attaching small magnets to the articulators and monitoring the magnetic field changes with sensors close to the mouth. The captured sensor data is then transformed into a sequence of speech parameter vectors from which a time-domain speech signal is finally synthesised. The key component of our system is a parametric transformation which represents the PMA-to-speech mapping. Here, this transformation takes the form of a statistical model (a mixture of factor analysers, more specifically) whose parameters are learned from simultaneous recordings of PMA and speech signals acquired before laryngectomy. To evaluate the performance of our system on voice reconstruction, we recorded two PMA-and-speech databases with different phonetic complexity for several non-impaired subjects. Results show that our system is able to synthesise speech that sounds as the original voice of the subject and also is intelligible. However, more work still need to be done to achieve a consistent synthesis for phonetically-rich vocabularies.
    42 schema:editor N3ae303468b264089a66cd26a46febb2d
    43 schema:genre chapter
    44 schema:inLanguage en
    45 schema:isAccessibleForFree true
    46 schema:isPartOf Nbfbc3303d6af4c0a8fdb614ecb7af233
    47 schema:name Voice Restoration After Laryngectomy Based on Magnetic Sensing of Articulator Movement and Statistical Articulation-to-Speech Conversion
    48 schema:pagination 295-316
    49 schema:productId N7ca2ce9069324cc4a8a56d79ddb7c358
    50 Na60641f60af34168897bb4fcae06cb62
    51 Na8313eb20af24010995308aa58de9010
    52 schema:publisher N12b0358275ff4c97bfa9a563c6d3171a
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084723328
    54 https://doi.org/10.1007/978-3-319-54717-6_17
    55 schema:sdDatePublished 2019-04-15T12:41
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher Nea0119ac5708472b96e1ed9abc660a17
    58 schema:url http://link.springer.com/10.1007/978-3-319-54717-6_17
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset chapters
    61 rdf:type schema:Chapter
    62 N12b0358275ff4c97bfa9a563c6d3171a schema:location Cham
    63 schema:name Springer International Publishing
    64 rdf:type schema:Organisation
    65 N3ae303468b264089a66cd26a46febb2d rdf:first Ne54bde28aebe4a068deb31d44af6e094
    66 rdf:rest Nb8802e57a0724ad8921a43d71f3d0676
    67 N3f59c4dfde26477a98c8b9afd99886cc rdf:first sg:person.015570370367.47
    68 rdf:rest N8b8671f7dae644408c95afee6907a3c4
    69 N6f93492548734e2b93bef8876aced0be schema:familyName Gamboa
    70 schema:givenName Hugo
    71 rdf:type schema:Person
    72 N7ca2ce9069324cc4a8a56d79ddb7c358 schema:name dimensions_id
    73 schema:value pub.1084723328
    74 rdf:type schema:PropertyValue
    75 N8a7cb5cdf09446d9b2e0efd72edd2645 rdf:first sg:person.010477131004.17
    76 rdf:rest Ne1a63436ef8a456d9319afab51b4a66b
    77 N8b8671f7dae644408c95afee6907a3c4 rdf:first sg:person.01345774160.80
    78 rdf:rest Nb7c851852f054599b6847a70125a374a
    79 Na60641f60af34168897bb4fcae06cb62 schema:name readcube_id
    80 schema:value c8b725c96a2ea08de747d516a05b8a99769aad601f85916d748e55a4a6c14304
    81 rdf:type schema:PropertyValue
    82 Na8313eb20af24010995308aa58de9010 schema:name doi
    83 schema:value 10.1007/978-3-319-54717-6_17
    84 rdf:type schema:PropertyValue
    85 Nb7c851852f054599b6847a70125a374a rdf:first sg:person.0712117224.27
    86 rdf:rest Ne156a09b304d4fd4a56a0a94ddd10b43
    87 Nb8802e57a0724ad8921a43d71f3d0676 rdf:first N6f93492548734e2b93bef8876aced0be
    88 rdf:rest rdf:nil
    89 Nbfbc3303d6af4c0a8fdb614ecb7af233 schema:isbn 978-3-319-54716-9
    90 978-3-319-54717-6
    91 schema:name Biomedical Engineering Systems and Technologies
    92 rdf:type schema:Book
    93 Ne156a09b304d4fd4a56a0a94ddd10b43 rdf:first sg:person.012553154205.25
    94 rdf:rest rdf:nil
    95 Ne1a63436ef8a456d9319afab51b4a66b rdf:first sg:person.014026356107.48
    96 rdf:rest Nfecf4ad9f8b84792b80089988a04e904
    97 Ne54bde28aebe4a068deb31d44af6e094 schema:familyName Fred
    98 schema:givenName Ana
    99 rdf:type schema:Person
    100 Nea0119ac5708472b96e1ed9abc660a17 schema:name Springer Nature - SN SciGraph project
    101 rdf:type schema:Organization
    102 Nfecf4ad9f8b84792b80089988a04e904 rdf:first sg:person.01254544377.73
    103 rdf:rest N3f59c4dfde26477a98c8b9afd99886cc
    104 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Engineering
    106 rdf:type schema:DefinedTerm
    107 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Electrical and Electronic Engineering
    109 rdf:type schema:DefinedTerm
    110 sg:person.010477131004.17 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
    111 schema:familyName Gonzalez
    112 schema:givenName Jose A.
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010477131004.17
    114 rdf:type schema:Person
    115 sg:person.01254544377.73 schema:affiliation https://www.grid.ac/institutes/grid.9481.4
    116 schema:familyName Gilbert
    117 schema:givenName James M.
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254544377.73
    119 rdf:type schema:Person
    120 sg:person.012553154205.25 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
    121 schema:familyName Moore
    122 schema:givenName Roger K.
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012553154205.25
    124 rdf:type schema:Person
    125 sg:person.01345774160.80 schema:affiliation https://www.grid.ac/institutes/grid.417700.5
    126 schema:familyName Ell
    127 schema:givenName Stephen R.
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345774160.80
    129 rdf:type schema:Person
    130 sg:person.014026356107.48 schema:affiliation https://www.grid.ac/institutes/grid.9481.4
    131 schema:familyName Cheah
    132 schema:givenName Lam A.
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014026356107.48
    134 rdf:type schema:Person
    135 sg:person.015570370367.47 schema:affiliation https://www.grid.ac/institutes/grid.9481.4
    136 schema:familyName Bai
    137 schema:givenName Jie
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015570370367.47
    139 rdf:type schema:Person
    140 sg:person.0712117224.27 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
    141 schema:familyName Green
    142 schema:givenName Phil D.
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712117224.27
    144 rdf:type schema:Person
    145 sg:pub.10.1007/s00405-009-1087-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007938353
    146 https://doi.org/10.1007/s00405-009-1087-4
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/0167-6393(82)90017-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013069410
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/0169-7439(93)85002-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010576244
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.csl.2015.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025403158
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.csl.2016.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051535474
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.medengphy.2007.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034071207
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.medengphy.2010.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021064141
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.specom.2007.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017871071
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.specom.2009.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035380827
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.specom.2009.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047966825
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.specom.2009.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003025659
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.specom.2009.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007983657
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/j.specom.2011.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053477171
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/j.specom.2012.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010068452
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1017/s0022215100133304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051919926
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1080/07434610600650276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020738081
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1109/cvpr.2009.5206580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093837804
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1109/icassp.1984.1172716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086214699
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1109/icassp.1992.225953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086316676
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1109/icassp.2009.4960478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093324913
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1109/pacrim.1993.407206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086363651
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1109/tasl.2007.907344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061516075
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1109/tassp.1978.1163055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061518392
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1109/tbme.2014.2319000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061529570
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1109/tpami.2007.1167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743289
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1109/tsa.2005.858052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061786438
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1111/j.1365-2273.1995.tb01601.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046462893
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1121/1.381848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062333143
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1192/bjp.163.2.173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064171795
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1590/s1807-59322005000200010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011794906
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.3109/00016489409126125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037688284
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.3389/fnins.2015.00217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022155844
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.5220/0005354601090116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099504265
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.5220/0005824501080116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099546554
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.5772/16935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024780362
    215 rdf:type schema:CreativeWork
    216 https://www.grid.ac/institutes/grid.11835.3e schema:alternateName University of Sheffield
    217 schema:name Department of Computer Science University of Sheffield Sheffield UK
    218 rdf:type schema:Organization
    219 https://www.grid.ac/institutes/grid.417700.5 schema:alternateName Hull and East Yorkshire Hospitals NHS Trust
    220 schema:name Hull and East Yorkshire Hospitals Trust, Castle Hill Hospital Cottingham UK
    221 rdf:type schema:Organization
    222 https://www.grid.ac/institutes/grid.9481.4 schema:alternateName University of Hull
    223 schema:name School of Engineering University of Hull Kingston upon Hull UK
    224 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...