Pattern Recognition: Supervised Learning on the Basis of Cluster Structures View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

Rodchenko Vadim

ABSTRACT

The original method of recognition of the hidden regularities in data of the training set is described in the paper. The method is based on: the analysis of properties combinations of a space describing objects; the construction of cluster structures; the search for sub-spaces where patterns of classes do not intersect. Application of this method for the solution of problems of pattern recognition with supervised learning is shown. More... »

PAGES

106-113

Book

TITLE

Pattern Recognition and Information Processing

ISBN

978-3-319-54219-5
978-3-319-54220-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-54220-1_11

DOI

http://dx.doi.org/10.1007/978-3-319-54220-1_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083890753


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yanka Kupala State University of Grodno", 
          "id": "https://www.grid.ac/institutes/grid.78041.3a", 
          "name": [
            "Yanka Kupala State University of Grodno Grodno Republic of Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vadim", 
        "givenName": "Rodchenko", 
        "type": "Person"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "The original method of recognition of the hidden regularities in data of the training set is described in the paper. The method is based on: the analysis of properties combinations of a space describing objects; the construction of cluster structures; the search for sub-spaces where patterns of classes do not intersect. Application of this method for the solution of problems of pattern recognition with supervised learning is shown.", 
    "editor": [
      {
        "familyName": "Krasnoproshin", 
        "givenName": "Viktor V.", 
        "type": "Person"
      }, 
      {
        "familyName": "Ablameyko", 
        "givenName": "Sergey V.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-54220-1_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-54219-5", 
        "978-3-319-54220-1"
      ], 
      "name": "Pattern Recognition and Information Processing", 
      "type": "Book"
    }, 
    "name": "Pattern Recognition: Supervised Learning on the Basis of Cluster Structures", 
    "pagination": "106-113", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-54220-1_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7860c1650dce4233f465d356d5b0533555be90d3146296e6ed98abac9e3c31e0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083890753"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-54220-1_11", 
      "https://app.dimensions.ai/details/publication/pub.1083890753"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000205.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-54220-1_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-54220-1_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-54220-1_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-54220-1_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-54220-1_11'


 

This table displays all metadata directly associated to this object as RDF triples.

69 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-54220-1_11 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N9aff4cba136d4f2ca617fc6600c7f2f9
4 schema:datePublished 2017
5 schema:datePublishedReg 2017-01-01
6 schema:description The original method of recognition of the hidden regularities in data of the training set is described in the paper. The method is based on: the analysis of properties combinations of a space describing objects; the construction of cluster structures; the search for sub-spaces where patterns of classes do not intersect. Application of this method for the solution of problems of pattern recognition with supervised learning is shown.
7 schema:editor N972a510b7a484e40b5438818ddcef071
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N6ba4c7bfa37b4598bd087d7ee8110efe
12 schema:name Pattern Recognition: Supervised Learning on the Basis of Cluster Structures
13 schema:pagination 106-113
14 schema:productId N141ca9c371dc4b44b2cb0b84b1401d5a
15 N387252742a56402995e45afa07644c84
16 N4a96366e969e43e28ffca5233b97cdea
17 schema:publisher Nc90adfa60119482c9493b711c0ae98b8
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083890753
19 https://doi.org/10.1007/978-3-319-54220-1_11
20 schema:sdDatePublished 2019-04-15T20:57
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N9e3a076d158f4b2894d2d4c5ea869659
23 schema:url http://link.springer.com/10.1007/978-3-319-54220-1_11
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N141ca9c371dc4b44b2cb0b84b1401d5a schema:name readcube_id
28 schema:value 7860c1650dce4233f465d356d5b0533555be90d3146296e6ed98abac9e3c31e0
29 rdf:type schema:PropertyValue
30 N27cb782e689045b48491952935172042 schema:familyName Ablameyko
31 schema:givenName Sergey V.
32 rdf:type schema:Person
33 N387252742a56402995e45afa07644c84 schema:name doi
34 schema:value 10.1007/978-3-319-54220-1_11
35 rdf:type schema:PropertyValue
36 N4087487bc9484deaa70c2bdd7f6b6732 schema:affiliation https://www.grid.ac/institutes/grid.78041.3a
37 schema:familyName Vadim
38 schema:givenName Rodchenko
39 rdf:type schema:Person
40 N4a96366e969e43e28ffca5233b97cdea schema:name dimensions_id
41 schema:value pub.1083890753
42 rdf:type schema:PropertyValue
43 N6ba4c7bfa37b4598bd087d7ee8110efe schema:isbn 978-3-319-54219-5
44 978-3-319-54220-1
45 schema:name Pattern Recognition and Information Processing
46 rdf:type schema:Book
47 N972a510b7a484e40b5438818ddcef071 rdf:first Na5370acf38164c9489d7665334b98c50
48 rdf:rest Nbb13e4188aec491baf79e9814a40c07c
49 N9aff4cba136d4f2ca617fc6600c7f2f9 rdf:first N4087487bc9484deaa70c2bdd7f6b6732
50 rdf:rest rdf:nil
51 N9e3a076d158f4b2894d2d4c5ea869659 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 Na5370acf38164c9489d7665334b98c50 schema:familyName Krasnoproshin
54 schema:givenName Viktor V.
55 rdf:type schema:Person
56 Nbb13e4188aec491baf79e9814a40c07c rdf:first N27cb782e689045b48491952935172042
57 rdf:rest rdf:nil
58 Nc90adfa60119482c9493b711c0ae98b8 schema:location Cham
59 schema:name Springer International Publishing
60 rdf:type schema:Organisation
61 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
62 schema:name Information and Computing Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
65 schema:name Artificial Intelligence and Image Processing
66 rdf:type schema:DefinedTerm
67 https://www.grid.ac/institutes/grid.78041.3a schema:alternateName Yanka Kupala State University of Grodno
68 schema:name Yanka Kupala State University of Grodno Grodno Republic of Belarus
69 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...