Bone Mineral Densitometry Pitfalls View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-08-12

AUTHORS

Giuseppe Guglielmi , Federico Ponti , Sara Guerri , Alberto Bazzocchi

ABSTRACT

Osteoporosis is a widespread disease and represents a significant cause of morbidity and mortality in the elderly, especially in developed countries. The burden of osteoporosis is extremely high, both in terms of morbidity and in socioeconomic costs associated with the disease and its complications. Dual-energy X-ray absorptiometry (DXA) represents the gold standard for diagnosis and monitoring osteoporosis and low bone mass conditions. Over the past few years, there has been an impressive increase in the use of bone densitometry. The latest generation of scanners provides images of enhanced resolution with the important advantage of a very low radiation dose received by patients (approximately between 1 and 10 μSv). Despite all of this, DXA is often little understood among radiologists. To correctly perform and report a DXA examination, a deep knowledge of the appropriate clinical indications, scan acquisition modalities, images analysis, and potential pitfalls is required. Both the technologists who perform the test and the physicians who interpretate the results must have sufficient expertise in identifying common sources of mistakes (which can occur in every step of the examination, from patient preparation to data analysis) in order to avoid them. More... »

PAGES

893-923

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-53496-1_41

DOI

http://dx.doi.org/10.1007/978-3-319-53496-1_41

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091160052


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Scientific Institute \u201cCasa Sollievo della Sofferenza\u201d Hospital, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Italy", 
          "id": "http://www.grid.ac/institutes/grid.413503.0", 
          "name": [
            "Department of Radiology, University of Foggia, Viale Luigi Pinto 1, 71100, Foggia, Italy", 
            "Department of Radiology, Scientific Institute \u201cCasa Sollievo della Sofferenza\u201d Hospital, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guglielmi", 
        "givenName": "Giuseppe", 
        "id": "sg:person.01101554723.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101554723.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The \u201cRizzoli\u201d Orthopaedic Institute, Via G. C. Pupilli 1, 40136, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.419038.7", 
          "name": [
            "Department of Specialized, Diagnostic and Experimental Medicine, University of Bologna, Sant\u2019Orsola\u00a0\u2013 Malpighi Hospital, Via G. Massarenti 9, 40138, Bologna, Italy", 
            "The \u201cRizzoli\u201d Orthopaedic Institute, Via G. C. Pupilli 1, 40136, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ponti", 
        "givenName": "Federico", 
        "id": "sg:person.0677056772.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677056772.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Specialized, Diagnostic and Experimental Medicine, University of Bologna, Sant\u2019Orsola\u00a0\u2013 Malpighi Hospital, Via G. Massarenti 9, 40138, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "Department of Specialized, Diagnostic and Experimental Medicine, University of Bologna, Sant\u2019Orsola\u00a0\u2013 Malpighi Hospital, Via G. Massarenti 9, 40138, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guerri", 
        "givenName": "Sara", 
        "id": "sg:person.07646374337.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07646374337.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The \u201cRizzoli\u201d Orthopaedic Institute, Via G. C. Pupilli 1, 40136, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.419038.7", 
          "name": [
            "The \u201cRizzoli\u201d Orthopaedic Institute, Via G. C. Pupilli 1, 40136, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bazzocchi", 
        "givenName": "Alberto", 
        "id": "sg:person.01236303515.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236303515.94"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-08-12", 
    "datePublishedReg": "2017-08-12", 
    "description": "Osteoporosis is a widespread disease and represents a significant cause of morbidity and mortality in the elderly, especially in developed countries. The burden of osteoporosis is extremely high, both in terms of morbidity and in socioeconomic costs associated with the disease and its complications. Dual-energy X-ray absorptiometry (DXA) represents the gold standard for diagnosis and monitoring osteoporosis and low bone mass conditions. Over the past few years, there has been an impressive increase in the use of bone densitometry. The latest generation of scanners provides images of enhanced resolution with the important advantage of a very low radiation dose received by patients (approximately between 1 and 10\u00a0\u03bcSv). Despite all of this, DXA is often little understood among radiologists. To correctly perform and report a DXA examination, a deep knowledge of the appropriate clinical indications, scan acquisition modalities, images analysis, and potential pitfalls is required. Both the technologists who perform the test and the physicians who interpretate the results must have sufficient expertise in identifying common sources of mistakes (which can occur in every step of the examination, from patient preparation to data analysis) in order to avoid\u00a0them.", 
    "editor": [
      {
        "familyName": "Peh", 
        "givenName": "Wilfred C. G.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-53496-1_41", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-53494-7", 
        "978-3-319-53496-1"
      ], 
      "name": "Pitfalls in Musculoskeletal Radiology", 
      "type": "Book"
    }, 
    "keywords": [
      "burden of osteoporosis", 
      "terms of morbidity", 
      "appropriate clinical indications", 
      "low bone mass conditions", 
      "low radiation dose", 
      "clinical indications", 
      "bone densitometry", 
      "ray absorptiometry", 
      "DXA examination", 
      "significant cause", 
      "osteoporosis", 
      "widespread disease", 
      "gold standard", 
      "socioeconomic costs", 
      "radiation dose", 
      "morbidity", 
      "disease", 
      "common source", 
      "sufficient expertise", 
      "potential pitfalls", 
      "impressive increase", 
      "complications", 
      "patients", 
      "absorptiometry", 
      "mortality", 
      "diagnosis", 
      "dose", 
      "DXA", 
      "physicians", 
      "radiologists", 
      "modalities", 
      "burden", 
      "cause", 
      "examination", 
      "indications", 
      "pitfalls", 
      "densitometry", 
      "years", 
      "acquisition modalities", 
      "increase", 
      "test", 
      "image analysis", 
      "scanner", 
      "use", 
      "technologists", 
      "knowledge", 
      "countries", 
      "expertise", 
      "standards", 
      "results", 
      "analysis", 
      "deep knowledge", 
      "important advantages", 
      "conditions", 
      "latest generation", 
      "generation", 
      "cost", 
      "advantages", 
      "resolution", 
      "terms", 
      "images", 
      "source", 
      "order", 
      "mistakes", 
      "enhanced resolution", 
      "mass conditions", 
      "bone mass conditions", 
      "scan acquisition modalities", 
      "Bone Mineral Densitometry Pitfalls", 
      "Mineral Densitometry Pitfalls", 
      "Densitometry Pitfalls"
    ], 
    "name": "Bone Mineral Densitometry Pitfalls", 
    "pagination": "893-923", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091160052"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-53496-1_41"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-53496-1_41", 
      "https://app.dimensions.ai/details/publication/pub.1091160052"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_195.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-53496-1_41"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-53496-1_41'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-53496-1_41'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-53496-1_41'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-53496-1_41'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      23 PREDICATES      95 URIs      88 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-53496-1_41 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N3b044b88f76a492dbbab4c906cb164c6
4 schema:datePublished 2017-08-12
5 schema:datePublishedReg 2017-08-12
6 schema:description Osteoporosis is a widespread disease and represents a significant cause of morbidity and mortality in the elderly, especially in developed countries. The burden of osteoporosis is extremely high, both in terms of morbidity and in socioeconomic costs associated with the disease and its complications. Dual-energy X-ray absorptiometry (DXA) represents the gold standard for diagnosis and monitoring osteoporosis and low bone mass conditions. Over the past few years, there has been an impressive increase in the use of bone densitometry. The latest generation of scanners provides images of enhanced resolution with the important advantage of a very low radiation dose received by patients (approximately between 1 and 10 μSv). Despite all of this, DXA is often little understood among radiologists. To correctly perform and report a DXA examination, a deep knowledge of the appropriate clinical indications, scan acquisition modalities, images analysis, and potential pitfalls is required. Both the technologists who perform the test and the physicians who interpretate the results must have sufficient expertise in identifying common sources of mistakes (which can occur in every step of the examination, from patient preparation to data analysis) in order to avoid them.
7 schema:editor Nf021dd7f6e93493298df53871ecc1091
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N0117aa32ed134781b5fd7d4fe122c479
12 schema:keywords Bone Mineral Densitometry Pitfalls
13 DXA
14 DXA examination
15 Densitometry Pitfalls
16 Mineral Densitometry Pitfalls
17 absorptiometry
18 acquisition modalities
19 advantages
20 analysis
21 appropriate clinical indications
22 bone densitometry
23 bone mass conditions
24 burden
25 burden of osteoporosis
26 cause
27 clinical indications
28 common source
29 complications
30 conditions
31 cost
32 countries
33 deep knowledge
34 densitometry
35 diagnosis
36 disease
37 dose
38 enhanced resolution
39 examination
40 expertise
41 generation
42 gold standard
43 image analysis
44 images
45 important advantages
46 impressive increase
47 increase
48 indications
49 knowledge
50 latest generation
51 low bone mass conditions
52 low radiation dose
53 mass conditions
54 mistakes
55 modalities
56 morbidity
57 mortality
58 order
59 osteoporosis
60 patients
61 physicians
62 pitfalls
63 potential pitfalls
64 radiation dose
65 radiologists
66 ray absorptiometry
67 resolution
68 results
69 scan acquisition modalities
70 scanner
71 significant cause
72 socioeconomic costs
73 source
74 standards
75 sufficient expertise
76 technologists
77 terms
78 terms of morbidity
79 test
80 use
81 widespread disease
82 years
83 schema:name Bone Mineral Densitometry Pitfalls
84 schema:pagination 893-923
85 schema:productId N2833beaa34224fd784479e1a11b69a29
86 N283f8ad0b5f1421786634719623a43a6
87 schema:publisher Ne9e2925ff9ed4e5d9c27c45f18fd8c5d
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091160052
89 https://doi.org/10.1007/978-3-319-53496-1_41
90 schema:sdDatePublished 2022-01-01T19:11
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher N813df7896ccd491a8585f34d74956ce5
93 schema:url https://doi.org/10.1007/978-3-319-53496-1_41
94 sgo:license sg:explorer/license/
95 sgo:sdDataset chapters
96 rdf:type schema:Chapter
97 N0117aa32ed134781b5fd7d4fe122c479 schema:isbn 978-3-319-53494-7
98 978-3-319-53496-1
99 schema:name Pitfalls in Musculoskeletal Radiology
100 rdf:type schema:Book
101 N2833beaa34224fd784479e1a11b69a29 schema:name doi
102 schema:value 10.1007/978-3-319-53496-1_41
103 rdf:type schema:PropertyValue
104 N283f8ad0b5f1421786634719623a43a6 schema:name dimensions_id
105 schema:value pub.1091160052
106 rdf:type schema:PropertyValue
107 N3b044b88f76a492dbbab4c906cb164c6 rdf:first sg:person.01101554723.35
108 rdf:rest Neb73c33a6a444f56bcccc45e54f716f0
109 N813df7896ccd491a8585f34d74956ce5 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Nc0c3cc323fa74070bd9899d6d5a1f4c3 schema:familyName Peh
112 schema:givenName Wilfred C. G.
113 rdf:type schema:Person
114 Nda92e74dbfcf487098535fa1ff3bb2fe rdf:first sg:person.07646374337.20
115 rdf:rest Ne8dada76824c40d48fae996716303746
116 Ne8dada76824c40d48fae996716303746 rdf:first sg:person.01236303515.94
117 rdf:rest rdf:nil
118 Ne9e2925ff9ed4e5d9c27c45f18fd8c5d schema:name Springer Nature
119 rdf:type schema:Organisation
120 Neb73c33a6a444f56bcccc45e54f716f0 rdf:first sg:person.0677056772.79
121 rdf:rest Nda92e74dbfcf487098535fa1ff3bb2fe
122 Nf021dd7f6e93493298df53871ecc1091 rdf:first Nc0c3cc323fa74070bd9899d6d5a1f4c3
123 rdf:rest rdf:nil
124 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
125 schema:name Medical and Health Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
128 schema:name Clinical Sciences
129 rdf:type schema:DefinedTerm
130 sg:person.01101554723.35 schema:affiliation grid-institutes:grid.413503.0
131 schema:familyName Guglielmi
132 schema:givenName Giuseppe
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101554723.35
134 rdf:type schema:Person
135 sg:person.01236303515.94 schema:affiliation grid-institutes:grid.419038.7
136 schema:familyName Bazzocchi
137 schema:givenName Alberto
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236303515.94
139 rdf:type schema:Person
140 sg:person.0677056772.79 schema:affiliation grid-institutes:grid.419038.7
141 schema:familyName Ponti
142 schema:givenName Federico
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677056772.79
144 rdf:type schema:Person
145 sg:person.07646374337.20 schema:affiliation grid-institutes:grid.6292.f
146 schema:familyName Guerri
147 schema:givenName Sara
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07646374337.20
149 rdf:type schema:Person
150 grid-institutes:grid.413503.0 schema:alternateName Department of Radiology, Scientific Institute “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Italy
151 schema:name Department of Radiology, Scientific Institute “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Italy
152 Department of Radiology, University of Foggia, Viale Luigi Pinto 1, 71100, Foggia, Italy
153 rdf:type schema:Organization
154 grid-institutes:grid.419038.7 schema:alternateName The “Rizzoli” Orthopaedic Institute, Via G. C. Pupilli 1, 40136, Bologna, Italy
155 schema:name Department of Specialized, Diagnostic and Experimental Medicine, University of Bologna, Sant’Orsola – Malpighi Hospital, Via G. Massarenti 9, 40138, Bologna, Italy
156 The “Rizzoli” Orthopaedic Institute, Via G. C. Pupilli 1, 40136, Bologna, Italy
157 rdf:type schema:Organization
158 grid-institutes:grid.6292.f schema:alternateName Department of Specialized, Diagnostic and Experimental Medicine, University of Bologna, Sant’Orsola – Malpighi Hospital, Via G. Massarenti 9, 40138, Bologna, Italy
159 schema:name Department of Specialized, Diagnostic and Experimental Medicine, University of Bologna, Sant’Orsola – Malpighi Hospital, Via G. Massarenti 9, 40138, Bologna, Italy
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...