Registration with Adjacent Anatomical Structures for Cardiac Resynchronization Therapy Guidance View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2017

AUTHORS

Daniel Toth , Maria Panayiotou , Alexander Brost , Jonathan M. Behar , Christopher A. Rinaldi , Kawal S. Rhode , Peter Mountney

ABSTRACT

The clinical applications and benefits of multi-modal image registration are wide-ranging and well established. Current image based approaches exploit cross-modality information, such as landmarks or anatomical structures, which is visible in both modalities. A lack of cross-modality information can prohibit accurate automatic registration. This paper proposes a novel approach for MR to X-ray image registration which uses prior knowledge of adjacent anatomical structures to enable registration without cross-modality image information. The registration of adjacent structures formulated as a partial surface registration problem which is solved using a globally optimal ICP method. The practical clinical application of the approach is demonstrated on an image guided cardiac resynchronization therapy procedure. The left ventricle (segmented from pre-operative MR) is registered to the coronary vessel tree (extracted from intra-operative fluoroscopic images). The proposed approach is validated on synthetic and phantom data, where the results show a good comparison with the ground truth registrations. The vertex-to-vertex MAE was \(3.28\pm 1.18\) mm for 10 X-ray image pairs of the phantom. More... »

PAGES

127-134

References to SciGraph publications

  • 2012. Automatic Segmentation of the Myocardium in Cine MR Images Using Deformable Registration in STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART. IMAGING AND MODELLING CHALLENGES
  • Book

    TITLE

    Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges

    ISBN

    978-3-319-52717-8
    978-3-319-52718-5

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-52718-5_14

    DOI

    http://dx.doi.org/10.1007/978-3-319-52718-5_14

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1074189816


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Siemens (United Kingdom)", 
              "id": "https://www.grid.ac/institutes/grid.14601.32", 
              "name": [
                "Siemens Healthcare Ltd. Camberley UK", 
                "Division of Imaging Sciences and Biomedical Engineering King\u2019s College London London England, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Toth", 
            "givenName": "Daniel", 
            "id": "sg:person.013763262157.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013763262157.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Division of Imaging Sciences and Biomedical Engineering King\u2019s College London London England, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Panayiotou", 
            "givenName": "Maria", 
            "id": "sg:person.01211357144.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211357144.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Siemens (Germany)", 
              "id": "https://www.grid.ac/institutes/grid.5406.7", 
              "name": [
                "Siemens Healthcare GmbH Erlangen Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brost", 
            "givenName": "Alexander", 
            "id": "sg:person.010014217553.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010014217553.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Health Service", 
              "id": "https://www.grid.ac/institutes/grid.451052.7", 
              "name": [
                "Division of Imaging Sciences and Biomedical Engineering King\u2019s College London London England, UK", 
                "Department of Cardiology Guy\u2019s and St. Thomas\u2019 Hospitals NHS Foundation Trust London UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Behar", 
            "givenName": "Jonathan M.", 
            "id": "sg:person.01333177012.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333177012.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Health Service", 
              "id": "https://www.grid.ac/institutes/grid.451052.7", 
              "name": [
                "Division of Imaging Sciences and Biomedical Engineering King\u2019s College London London England, UK", 
                "Department of Cardiology Guy\u2019s and St. Thomas\u2019 Hospitals NHS Foundation Trust London UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rinaldi", 
            "givenName": "Christopher A.", 
            "id": "sg:person.0700211354.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700211354.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Division of Imaging Sciences and Biomedical Engineering King\u2019s College London London England, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rhode", 
            "givenName": "Kawal S.", 
            "id": "sg:person.014143704447.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014143704447.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Medical Imaging Technologies, Siemens Healthcare Princeton USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mountney", 
            "givenName": "Peter", 
            "id": "sg:person.0702376130.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702376130.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1093/comjnl/8.3.250", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000646103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1118/1.4881140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024763957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2010.03.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035675050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-28326-0_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048550399", 
              "https://doi.org/10.1007/978-3-642-28326-0_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2003.819275", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061694486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2015.2513405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061745011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1076837261", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2013.184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094420674"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017", 
        "datePublishedReg": "2017-01-01", 
        "description": "The clinical applications and benefits of multi-modal image registration are wide-ranging and well established. Current image based approaches exploit cross-modality information, such as landmarks or anatomical structures, which is visible in both modalities. A lack of cross-modality information can prohibit accurate automatic registration. This paper proposes a novel approach for MR to X-ray image registration which uses prior knowledge of adjacent anatomical structures to enable registration without cross-modality image information. The registration of adjacent structures formulated as a partial surface registration problem which is solved using a globally optimal ICP method. The practical clinical application of the approach is demonstrated on an image guided cardiac resynchronization therapy procedure. The left ventricle (segmented from pre-operative MR) is registered to the coronary vessel tree (extracted from intra-operative fluoroscopic images). The proposed approach is validated on synthetic and phantom data, where the results show a good comparison with the ground truth registrations. The vertex-to-vertex MAE was \\(3.28\\pm 1.18\\) mm for 10 X-ray image pairs of the phantom.", 
        "editor": [
          {
            "familyName": "Mansi", 
            "givenName": "Tommaso", 
            "type": "Person"
          }, 
          {
            "familyName": "McLeod", 
            "givenName": "Kristin", 
            "type": "Person"
          }, 
          {
            "familyName": "Pop", 
            "givenName": "Mihaela", 
            "type": "Person"
          }, 
          {
            "familyName": "Rhode", 
            "givenName": "Kawal", 
            "type": "Person"
          }, 
          {
            "familyName": "Sermesant", 
            "givenName": "Maxime", 
            "type": "Person"
          }, 
          {
            "familyName": "Young", 
            "givenName": "Alistair", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-52718-5_14", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-319-52717-8", 
            "978-3-319-52718-5"
          ], 
          "name": "Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges", 
          "type": "Book"
        }, 
        "name": "Registration with Adjacent Anatomical Structures for Cardiac Resynchronization Therapy Guidance", 
        "pagination": "127-134", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-52718-5_14"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1a05f12b12d5169a9ce2b17c9d40b4729d6b554976943fa280ecb31fbc6671e3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1074189816"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-52718-5_14", 
          "https://app.dimensions.ai/details/publication/pub.1074189816"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T20:15", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000331.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-52718-5_14"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-52718-5_14'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-52718-5_14'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-52718-5_14'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-52718-5_14'


     

    This table displays all metadata directly associated to this object as RDF triples.

    170 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-52718-5_14 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N92ca92c155944de996175590895888ca
    4 schema:citation sg:pub.10.1007/978-3-642-28326-0_10
    5 https://app.dimensions.ai/details/publication/pub.1076837261
    6 https://doi.org/10.1016/j.media.2010.03.005
    7 https://doi.org/10.1093/comjnl/8.3.250
    8 https://doi.org/10.1109/iccv.2013.184
    9 https://doi.org/10.1109/tmi.2003.819275
    10 https://doi.org/10.1109/tpami.2015.2513405
    11 https://doi.org/10.1118/1.4881140
    12 schema:datePublished 2017
    13 schema:datePublishedReg 2017-01-01
    14 schema:description The clinical applications and benefits of multi-modal image registration are wide-ranging and well established. Current image based approaches exploit cross-modality information, such as landmarks or anatomical structures, which is visible in both modalities. A lack of cross-modality information can prohibit accurate automatic registration. This paper proposes a novel approach for MR to X-ray image registration which uses prior knowledge of adjacent anatomical structures to enable registration without cross-modality image information. The registration of adjacent structures formulated as a partial surface registration problem which is solved using a globally optimal ICP method. The practical clinical application of the approach is demonstrated on an image guided cardiac resynchronization therapy procedure. The left ventricle (segmented from pre-operative MR) is registered to the coronary vessel tree (extracted from intra-operative fluoroscopic images). The proposed approach is validated on synthetic and phantom data, where the results show a good comparison with the ground truth registrations. The vertex-to-vertex MAE was \(3.28\pm 1.18\) mm for 10 X-ray image pairs of the phantom.
    15 schema:editor N0ec9d3b3aa244eac96b7f2e385785990
    16 schema:genre chapter
    17 schema:inLanguage en
    18 schema:isAccessibleForFree true
    19 schema:isPartOf N34afb3adc2d64adcb7778f21e88710a9
    20 schema:name Registration with Adjacent Anatomical Structures for Cardiac Resynchronization Therapy Guidance
    21 schema:pagination 127-134
    22 schema:productId Nd3fd4a94e955436e99ad628960f9ec61
    23 Ned053476da4e4d29a76826e3a6b7d3c4
    24 Nf5629eb39e8d4a3fb5db2657402dadda
    25 schema:publisher N9d40989118104e1ca6fc634c346dbfba
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074189816
    27 https://doi.org/10.1007/978-3-319-52718-5_14
    28 schema:sdDatePublished 2019-04-15T20:15
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N6c5e542da6184d41acaba2b7bb7e7c35
    31 schema:url http://link.springer.com/10.1007/978-3-319-52718-5_14
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset chapters
    34 rdf:type schema:Chapter
    35 N03e9efc55e264e95b7c14f69d7f10891 rdf:first sg:person.0702376130.54
    36 rdf:rest rdf:nil
    37 N0ec9d3b3aa244eac96b7f2e385785990 rdf:first N401a02ecb02841b683773941c418d3ff
    38 rdf:rest Nbc7eb02bba1c4d36bd767ca5ecacb7ac
    39 N2b32b64f947746269e0db6165d4c21b1 rdf:first sg:person.0700211354.00
    40 rdf:rest Nd0d821b1362c4e259df224cb6ee715f7
    41 N34afb3adc2d64adcb7778f21e88710a9 schema:isbn 978-3-319-52717-8
    42 978-3-319-52718-5
    43 schema:name Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges
    44 rdf:type schema:Book
    45 N401a02ecb02841b683773941c418d3ff schema:familyName Mansi
    46 schema:givenName Tommaso
    47 rdf:type schema:Person
    48 N51e05b598cd94e2a8ef948822a386134 rdf:first Nf4b6aa3a5a5b47a7b2812598d9ad82e8
    49 rdf:rest N9821b33a56bb44999ed5b817158a3ac5
    50 N566c6480249a46b9aa256d7711b0b296 schema:familyName McLeod
    51 schema:givenName Kristin
    52 rdf:type schema:Person
    53 N6c5e542da6184d41acaba2b7bb7e7c35 schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 N6ee1c22d5f0f4869b617617cb35610ac schema:name Division of Imaging Sciences and Biomedical Engineering King’s College London London England, UK
    56 rdf:type schema:Organization
    57 N79121189785647a081d7497f6408133d rdf:first sg:person.01211357144.67
    58 rdf:rest Ne78d396925004252bc6ac897a74e64a7
    59 N7a35138edffb4fcf91fc78b2bbef663a schema:familyName Young
    60 schema:givenName Alistair
    61 rdf:type schema:Person
    62 N81c451e9f4cf4777a20aaf2676428c02 schema:familyName Pop
    63 schema:givenName Mihaela
    64 rdf:type schema:Person
    65 N860115a9db954c8aac2300d73b77fa05 rdf:first N7a35138edffb4fcf91fc78b2bbef663a
    66 rdf:rest rdf:nil
    67 N92ca92c155944de996175590895888ca rdf:first sg:person.013763262157.14
    68 rdf:rest N79121189785647a081d7497f6408133d
    69 N9821b33a56bb44999ed5b817158a3ac5 rdf:first Ne1913b1a4a514bdabf100b90819afedf
    70 rdf:rest N860115a9db954c8aac2300d73b77fa05
    71 N9d40989118104e1ca6fc634c346dbfba schema:location Cham
    72 schema:name Springer International Publishing
    73 rdf:type schema:Organisation
    74 Nae62cce11ca64199a7a7571b83a356cf rdf:first N81c451e9f4cf4777a20aaf2676428c02
    75 rdf:rest N51e05b598cd94e2a8ef948822a386134
    76 Nbb3ee9264e1e4eeb8519a3e6c91389be schema:name Medical Imaging Technologies, Siemens Healthcare Princeton USA
    77 rdf:type schema:Organization
    78 Nbc7eb02bba1c4d36bd767ca5ecacb7ac rdf:first N566c6480249a46b9aa256d7711b0b296
    79 rdf:rest Nae62cce11ca64199a7a7571b83a356cf
    80 Nd0d821b1362c4e259df224cb6ee715f7 rdf:first sg:person.014143704447.22
    81 rdf:rest N03e9efc55e264e95b7c14f69d7f10891
    82 Nd1220eb306b54a849970d04dfaaa8bdc rdf:first sg:person.01333177012.95
    83 rdf:rest N2b32b64f947746269e0db6165d4c21b1
    84 Nd3fd4a94e955436e99ad628960f9ec61 schema:name dimensions_id
    85 schema:value pub.1074189816
    86 rdf:type schema:PropertyValue
    87 Nda828cb155f947cfbc1539a390c90b4d schema:name Division of Imaging Sciences and Biomedical Engineering King’s College London London England, UK
    88 rdf:type schema:Organization
    89 Ne1913b1a4a514bdabf100b90819afedf schema:familyName Sermesant
    90 schema:givenName Maxime
    91 rdf:type schema:Person
    92 Ne78d396925004252bc6ac897a74e64a7 rdf:first sg:person.010014217553.25
    93 rdf:rest Nd1220eb306b54a849970d04dfaaa8bdc
    94 Ned053476da4e4d29a76826e3a6b7d3c4 schema:name doi
    95 schema:value 10.1007/978-3-319-52718-5_14
    96 rdf:type schema:PropertyValue
    97 Nf4b6aa3a5a5b47a7b2812598d9ad82e8 schema:familyName Rhode
    98 schema:givenName Kawal
    99 rdf:type schema:Person
    100 Nf5629eb39e8d4a3fb5db2657402dadda schema:name readcube_id
    101 schema:value 1a05f12b12d5169a9ce2b17c9d40b4729d6b554976943fa280ecb31fbc6671e3
    102 rdf:type schema:PropertyValue
    103 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Information and Computing Sciences
    105 rdf:type schema:DefinedTerm
    106 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Artificial Intelligence and Image Processing
    108 rdf:type schema:DefinedTerm
    109 sg:person.010014217553.25 schema:affiliation https://www.grid.ac/institutes/grid.5406.7
    110 schema:familyName Brost
    111 schema:givenName Alexander
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010014217553.25
    113 rdf:type schema:Person
    114 sg:person.01211357144.67 schema:affiliation N6ee1c22d5f0f4869b617617cb35610ac
    115 schema:familyName Panayiotou
    116 schema:givenName Maria
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211357144.67
    118 rdf:type schema:Person
    119 sg:person.01333177012.95 schema:affiliation https://www.grid.ac/institutes/grid.451052.7
    120 schema:familyName Behar
    121 schema:givenName Jonathan M.
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333177012.95
    123 rdf:type schema:Person
    124 sg:person.013763262157.14 schema:affiliation https://www.grid.ac/institutes/grid.14601.32
    125 schema:familyName Toth
    126 schema:givenName Daniel
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013763262157.14
    128 rdf:type schema:Person
    129 sg:person.014143704447.22 schema:affiliation Nda828cb155f947cfbc1539a390c90b4d
    130 schema:familyName Rhode
    131 schema:givenName Kawal S.
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014143704447.22
    133 rdf:type schema:Person
    134 sg:person.0700211354.00 schema:affiliation https://www.grid.ac/institutes/grid.451052.7
    135 schema:familyName Rinaldi
    136 schema:givenName Christopher A.
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700211354.00
    138 rdf:type schema:Person
    139 sg:person.0702376130.54 schema:affiliation Nbb3ee9264e1e4eeb8519a3e6c91389be
    140 schema:familyName Mountney
    141 schema:givenName Peter
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702376130.54
    143 rdf:type schema:Person
    144 sg:pub.10.1007/978-3-642-28326-0_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048550399
    145 https://doi.org/10.1007/978-3-642-28326-0_10
    146 rdf:type schema:CreativeWork
    147 https://app.dimensions.ai/details/publication/pub.1076837261 schema:CreativeWork
    148 https://doi.org/10.1016/j.media.2010.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035675050
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1093/comjnl/8.3.250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000646103
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1109/iccv.2013.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094420674
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1109/tmi.2003.819275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694486
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1109/tpami.2015.2513405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061745011
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1118/1.4881140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024763957
    159 rdf:type schema:CreativeWork
    160 https://www.grid.ac/institutes/grid.14601.32 schema:alternateName Siemens (United Kingdom)
    161 schema:name Division of Imaging Sciences and Biomedical Engineering King’s College London London England, UK
    162 Siemens Healthcare Ltd. Camberley UK
    163 rdf:type schema:Organization
    164 https://www.grid.ac/institutes/grid.451052.7 schema:alternateName National Health Service
    165 schema:name Department of Cardiology Guy’s and St. Thomas’ Hospitals NHS Foundation Trust London UK
    166 Division of Imaging Sciences and Biomedical Engineering King’s College London London England, UK
    167 rdf:type schema:Organization
    168 https://www.grid.ac/institutes/grid.5406.7 schema:alternateName Siemens (Germany)
    169 schema:name Siemens Healthcare GmbH Erlangen Germany
    170 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...