Grain Refinement of Mg and Its Alloy by Inoculation of In Situ MgO Particles View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-02-16

AUTHORS

Yun Wang , Guosheng Peng , Zhongyun Fan

ABSTRACT

Significant grain refinement of commercial purity Mg and AZ91D Mg alloy was achieved by intensive melt shearing imposed to the melts prior to solidification without addition of grain refiner. Heterogeneous nucleation mechanism was investigated using analytical electron microscopy. It was demonstrated that the grain refinement was resulted from the promoted heterogeneous nucleation by inoculation of in situ MgO particles, which had been effectively dispersed by melt shearing. It was shown that MgO formed in pure Mg and AZ91D alloy melts were {1 0 0} and {1 1 1} faceted, respectively. For pure Mg sample, high resolution TEM revealed two orientation relationships OR I: (1 0 0) [0 −1 1] MgO // (0 −1 1 2) [0 1 −1 1] Mg, and OR II (1 0 0) [0 −1 1] MgO // (1 −1 0 2) [−2 4 −2 3] Mg. For the alloy sample, however, α-Mg grain was found to nucleate on the faceted {1 1 1} planes of MgO particles according to the OR III: (1 1 1) [0 −1 1] MgO // (0 0 0 1) [1 1 −2 0] Mg. The large number of MgO particles dispersed by intensive melt shearing acted as the substrates to promote heterogeneous nucleation process, leading to the significant grain refinement. More... »

PAGES

99-106

Book

TITLE

Magnesium Technology 2017

ISBN

978-3-319-52391-0
978-3-319-52392-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-52392-7_17

DOI

http://dx.doi.org/10.1007/978-3-319-52392-7_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083823114


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "LiME-Hub, BCAST, Brunel University London, UB8 3PH, Uxbridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "LiME-Hub, BCAST, Brunel University London, UB8 3PH, Uxbridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yun", 
        "id": "sg:person.013031122415.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013031122415.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LiME-Hub, BCAST, Brunel University London, UB8 3PH, Uxbridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "LiME-Hub, BCAST, Brunel University London, UB8 3PH, Uxbridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Guosheng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LiME-Hub, BCAST, Brunel University London, UB8 3PH, Uxbridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "LiME-Hub, BCAST, Brunel University London, UB8 3PH, Uxbridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhongyun", 
        "id": "sg:person.014202761657.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014202761657.20"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-02-16", 
    "datePublishedReg": "2017-02-16", 
    "description": "Significant grain refinement of commercial purity Mg and AZ91D Mg alloy was achieved by intensive melt shearing imposed to the melts prior to solidification without addition of grain refiner. Heterogeneous nucleation mechanism was investigated using analytical electron microscopy. It was demonstrated that the grain refinement was resulted from the promoted heterogeneous nucleation by inoculation of in situ MgO particles, which had been effectively dispersed by melt shearing. It was shown that MgO formed in pure Mg and AZ91D alloy melts were {1 0 0} and {1 1 1} faceted, respectively. For pure Mg sample, high resolution TEM revealed two orientation relationships OR I: (1 0 0) [0 \u22121 1] MgO // (0 \u22121 1 2) [0 1 \u22121 1] Mg, and OR II (1 0 0) [0 \u22121 1] MgO // (1 \u22121 0 2) [\u22122 4 \u22122 3] Mg. For the alloy sample, however, \u03b1-Mg grain was found to nucleate on the faceted {1 1 1} planes of MgO particles according to the OR III: (1 1 1) [0 \u22121 1] MgO // (0 0 0 1) [1 1 \u22122 0] Mg. The large number of MgO particles dispersed by intensive melt shearing acted as the substrates to promote heterogeneous nucleation process, leading to the significant grain refinement.", 
    "editor": [
      {
        "familyName": "Solanki", 
        "givenName": "Kiran N.", 
        "type": "Person"
      }, 
      {
        "familyName": "Orlov", 
        "givenName": "Dmytro", 
        "type": "Person"
      }, 
      {
        "familyName": "Singh", 
        "givenName": "Alok", 
        "type": "Person"
      }, 
      {
        "familyName": "Neelameggham", 
        "givenName": "Neale R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-52392-7_17", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-52391-0", 
        "978-3-319-52392-7"
      ], 
      "name": "Magnesium Technology 2017", 
      "type": "Book"
    }, 
    "keywords": [
      "significant grain refinement", 
      "intensive melt shearing", 
      "grain refinement", 
      "melt shearing", 
      "MgO particles", 
      "AZ91D Mg alloy", 
      "commercial purity Mg", 
      "AZ91D alloy melt", 
      "Mg alloy", 
      "pure Mg samples", 
      "grain refiner", 
      "Mg grains", 
      "pure Mg", 
      "alloy melt", 
      "purity Mg", 
      "high resolution TEM", 
      "analytical electron microscopy", 
      "alloy samples", 
      "heterogeneous nucleation mechanism", 
      "orientation relationship", 
      "heterogeneous nucleation process", 
      "Mg samples", 
      "resolution TEM", 
      "alloy", 
      "heterogeneous nucleation", 
      "particles", 
      "electron microscopy", 
      "shearing", 
      "nucleation mechanism", 
      "nucleation process", 
      "solidification", 
      "melt", 
      "refiner", 
      "Mg", 
      "refinement", 
      "nucleation", 
      "MgO", 
      "grains", 
      "TEM", 
      "substrate", 
      "microscopy", 
      "plane", 
      "process", 
      "large number", 
      "samples", 
      "addition", 
      "mechanism", 
      "number", 
      "relationship", 
      "inoculation", 
      "situ MgO particles", 
      "MgO // (0 \u22121 1 2) [0 1 \u22121 1] Mg"
    ], 
    "name": "Grain Refinement of Mg and Its Alloy by Inoculation of In Situ MgO Particles", 
    "pagination": "99-106", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083823114"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-52392-7_17"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-52392-7_17", 
      "https://app.dimensions.ai/details/publication/pub.1083823114"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_354.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-52392-7_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-52392-7_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-52392-7_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-52392-7_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-52392-7_17'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      23 PREDICATES      77 URIs      70 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-52392-7_17 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N39c2256833464914a3df8989a1695333
4 schema:datePublished 2017-02-16
5 schema:datePublishedReg 2017-02-16
6 schema:description Significant grain refinement of commercial purity Mg and AZ91D Mg alloy was achieved by intensive melt shearing imposed to the melts prior to solidification without addition of grain refiner. Heterogeneous nucleation mechanism was investigated using analytical electron microscopy. It was demonstrated that the grain refinement was resulted from the promoted heterogeneous nucleation by inoculation of in situ MgO particles, which had been effectively dispersed by melt shearing. It was shown that MgO formed in pure Mg and AZ91D alloy melts were {1 0 0} and {1 1 1} faceted, respectively. For pure Mg sample, high resolution TEM revealed two orientation relationships OR I: (1 0 0) [0 −1 1] MgO // (0 −1 1 2) [0 1 −1 1] Mg, and OR II (1 0 0) [0 −1 1] MgO // (1 −1 0 2) [−2 4 −2 3] Mg. For the alloy sample, however, α-Mg grain was found to nucleate on the faceted {1 1 1} planes of MgO particles according to the OR III: (1 1 1) [0 −1 1] MgO // (0 0 0 1) [1 1 −2 0] Mg. The large number of MgO particles dispersed by intensive melt shearing acted as the substrates to promote heterogeneous nucleation process, leading to the significant grain refinement.
7 schema:editor Nee59de8f93fe4f4191c0a58dc922b6ce
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nb301f98d50db4eeaa0cd24448b59c304
12 schema:keywords AZ91D Mg alloy
13 AZ91D alloy melt
14 Mg
15 Mg alloy
16 Mg grains
17 Mg samples
18 MgO
19 MgO // (0 −1 1 2) [0 1 −1 1] Mg
20 MgO particles
21 TEM
22 addition
23 alloy
24 alloy melt
25 alloy samples
26 analytical electron microscopy
27 commercial purity Mg
28 electron microscopy
29 grain refinement
30 grain refiner
31 grains
32 heterogeneous nucleation
33 heterogeneous nucleation mechanism
34 heterogeneous nucleation process
35 high resolution TEM
36 inoculation
37 intensive melt shearing
38 large number
39 mechanism
40 melt
41 melt shearing
42 microscopy
43 nucleation
44 nucleation mechanism
45 nucleation process
46 number
47 orientation relationship
48 particles
49 plane
50 process
51 pure Mg
52 pure Mg samples
53 purity Mg
54 refinement
55 refiner
56 relationship
57 resolution TEM
58 samples
59 shearing
60 significant grain refinement
61 situ MgO particles
62 solidification
63 substrate
64 schema:name Grain Refinement of Mg and Its Alloy by Inoculation of In Situ MgO Particles
65 schema:pagination 99-106
66 schema:productId N2de5205c708e47c3896e5c893e33e299
67 Nc472904e0a4e49489d2f8ef39f445f25
68 schema:publisher N9d86c226bf3f42c28bca0a5f64f95c9c
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083823114
70 https://doi.org/10.1007/978-3-319-52392-7_17
71 schema:sdDatePublished 2022-01-01T19:20
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N0e019824bd884f79b86f86a761e729ae
74 schema:url https://doi.org/10.1007/978-3-319-52392-7_17
75 sgo:license sg:explorer/license/
76 sgo:sdDataset chapters
77 rdf:type schema:Chapter
78 N0e019824bd884f79b86f86a761e729ae schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N2de5205c708e47c3896e5c893e33e299 schema:name doi
81 schema:value 10.1007/978-3-319-52392-7_17
82 rdf:type schema:PropertyValue
83 N384fca6f825d45998b8947db679c82d4 schema:familyName Singh
84 schema:givenName Alok
85 rdf:type schema:Person
86 N398065ee9e4547c98323e6bc4970edf4 rdf:first N5a9228ed19c14de5b8dee21c51ad3478
87 rdf:rest N42a7691e34fb41b289b6733c4a63573d
88 N39c2256833464914a3df8989a1695333 rdf:first sg:person.013031122415.15
89 rdf:rest Nd79405e431b9486683f72f7d71f03436
90 N42a7691e34fb41b289b6733c4a63573d rdf:first N384fca6f825d45998b8947db679c82d4
91 rdf:rest N864b1ec7b99a4eceb7166827a12b6b34
92 N44ba2bd4c07b41b381bae3f8abfc2390 schema:familyName Neelameggham
93 schema:givenName Neale R.
94 rdf:type schema:Person
95 N5a9228ed19c14de5b8dee21c51ad3478 schema:familyName Orlov
96 schema:givenName Dmytro
97 rdf:type schema:Person
98 N6f117213587f4cc0a30e8ce833fd37a5 rdf:first sg:person.014202761657.20
99 rdf:rest rdf:nil
100 N7070207a07044e1caf989965cd230909 schema:affiliation grid-institutes:grid.7728.a
101 schema:familyName Peng
102 schema:givenName Guosheng
103 rdf:type schema:Person
104 N864b1ec7b99a4eceb7166827a12b6b34 rdf:first N44ba2bd4c07b41b381bae3f8abfc2390
105 rdf:rest rdf:nil
106 N9d86c226bf3f42c28bca0a5f64f95c9c schema:name Springer Nature
107 rdf:type schema:Organisation
108 Nb301f98d50db4eeaa0cd24448b59c304 schema:isbn 978-3-319-52391-0
109 978-3-319-52392-7
110 schema:name Magnesium Technology 2017
111 rdf:type schema:Book
112 Nbf6123d75715480499a0f6af91569120 schema:familyName Solanki
113 schema:givenName Kiran N.
114 rdf:type schema:Person
115 Nc472904e0a4e49489d2f8ef39f445f25 schema:name dimensions_id
116 schema:value pub.1083823114
117 rdf:type schema:PropertyValue
118 Nd79405e431b9486683f72f7d71f03436 rdf:first N7070207a07044e1caf989965cd230909
119 rdf:rest N6f117213587f4cc0a30e8ce833fd37a5
120 Nee59de8f93fe4f4191c0a58dc922b6ce rdf:first Nbf6123d75715480499a0f6af91569120
121 rdf:rest N398065ee9e4547c98323e6bc4970edf4
122 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
123 schema:name Engineering
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
126 schema:name Materials Engineering
127 rdf:type schema:DefinedTerm
128 sg:person.013031122415.15 schema:affiliation grid-institutes:grid.7728.a
129 schema:familyName Wang
130 schema:givenName Yun
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013031122415.15
132 rdf:type schema:Person
133 sg:person.014202761657.20 schema:affiliation grid-institutes:grid.7728.a
134 schema:familyName Fan
135 schema:givenName Zhongyun
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014202761657.20
137 rdf:type schema:Person
138 grid-institutes:grid.7728.a schema:alternateName LiME-Hub, BCAST, Brunel University London, UB8 3PH, Uxbridge, UK
139 schema:name LiME-Hub, BCAST, Brunel University London, UB8 3PH, Uxbridge, UK
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...