Ontology type: schema:Chapter
2017-02-16
AUTHORSYun Wang , Guosheng Peng , Zhongyun Fan
ABSTRACTSignificant grain refinement of commercial purity Mg and AZ91D Mg alloy was achieved by intensive melt shearing imposed to the melts prior to solidification without addition of grain refiner. Heterogeneous nucleation mechanism was investigated using analytical electron microscopy. It was demonstrated that the grain refinement was resulted from the promoted heterogeneous nucleation by inoculation of in situ MgO particles, which had been effectively dispersed by melt shearing. It was shown that MgO formed in pure Mg and AZ91D alloy melts were {1 0 0} and {1 1 1} faceted, respectively. For pure Mg sample, high resolution TEM revealed two orientation relationships OR I: (1 0 0) [0 −1 1] MgO // (0 −1 1 2) [0 1 −1 1] Mg, and OR II (1 0 0) [0 −1 1] MgO // (1 −1 0 2) [−2 4 −2 3] Mg. For the alloy sample, however, α-Mg grain was found to nucleate on the faceted {1 1 1} planes of MgO particles according to the OR III: (1 1 1) [0 −1 1] MgO // (0 0 0 1) [1 1 −2 0] Mg. The large number of MgO particles dispersed by intensive melt shearing acted as the substrates to promote heterogeneous nucleation process, leading to the significant grain refinement. More... »
PAGES99-106
Magnesium Technology 2017
ISBN
978-3-319-52391-0
978-3-319-52392-7
http://scigraph.springernature.com/pub.10.1007/978-3-319-52392-7_17
DOIhttp://dx.doi.org/10.1007/978-3-319-52392-7_17
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1083823114
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "LiME-Hub, BCAST, Brunel University London, UB8 3PH, Uxbridge, UK",
"id": "http://www.grid.ac/institutes/grid.7728.a",
"name": [
"LiME-Hub, BCAST, Brunel University London, UB8 3PH, Uxbridge, UK"
],
"type": "Organization"
},
"familyName": "Wang",
"givenName": "Yun",
"id": "sg:person.013031122415.15",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013031122415.15"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "LiME-Hub, BCAST, Brunel University London, UB8 3PH, Uxbridge, UK",
"id": "http://www.grid.ac/institutes/grid.7728.a",
"name": [
"LiME-Hub, BCAST, Brunel University London, UB8 3PH, Uxbridge, UK"
],
"type": "Organization"
},
"familyName": "Peng",
"givenName": "Guosheng",
"type": "Person"
},
{
"affiliation": {
"alternateName": "LiME-Hub, BCAST, Brunel University London, UB8 3PH, Uxbridge, UK",
"id": "http://www.grid.ac/institutes/grid.7728.a",
"name": [
"LiME-Hub, BCAST, Brunel University London, UB8 3PH, Uxbridge, UK"
],
"type": "Organization"
},
"familyName": "Fan",
"givenName": "Zhongyun",
"id": "sg:person.014202761657.20",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014202761657.20"
],
"type": "Person"
}
],
"datePublished": "2017-02-16",
"datePublishedReg": "2017-02-16",
"description": "Significant grain refinement of commercial purity Mg and AZ91D Mg alloy was achieved by intensive melt shearing imposed to the melts prior to solidification without addition of grain refiner. Heterogeneous nucleation mechanism was investigated using analytical electron microscopy. It was demonstrated that the grain refinement was resulted from the promoted heterogeneous nucleation by inoculation of in situ MgO particles, which had been effectively dispersed by melt shearing. It was shown that MgO formed in pure Mg and AZ91D alloy melts were {1 0 0} and {1 1 1} faceted, respectively. For pure Mg sample, high resolution TEM revealed two orientation relationships OR I: (1 0 0) [0 \u22121 1] MgO // (0 \u22121 1 2) [0 1 \u22121 1] Mg, and OR II (1 0 0) [0 \u22121 1] MgO // (1 \u22121 0 2) [\u22122 4 \u22122 3] Mg. For the alloy sample, however, \u03b1-Mg grain was found to nucleate on the faceted {1 1 1} planes of MgO particles according to the OR III: (1 1 1) [0 \u22121 1] MgO // (0 0 0 1) [1 1 \u22122 0] Mg. The large number of MgO particles dispersed by intensive melt shearing acted as the substrates to promote heterogeneous nucleation process, leading to the significant grain refinement.",
"editor": [
{
"familyName": "Solanki",
"givenName": "Kiran N.",
"type": "Person"
},
{
"familyName": "Orlov",
"givenName": "Dmytro",
"type": "Person"
},
{
"familyName": "Singh",
"givenName": "Alok",
"type": "Person"
},
{
"familyName": "Neelameggham",
"givenName": "Neale R.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-52392-7_17",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-52391-0",
"978-3-319-52392-7"
],
"name": "Magnesium Technology 2017",
"type": "Book"
},
"keywords": [
"significant grain refinement",
"intensive melt shearing",
"grain refinement",
"melt shearing",
"MgO particles",
"AZ91D Mg alloy",
"\u03b1-Mg grains",
"commercial purity Mg",
"pure Mg samples",
"Mg alloy",
"purity Mg",
"grain refiner",
"pure Mg",
"alloy melt",
"high-resolution TEM",
"alloy samples",
"heterogeneous nucleation mechanism",
"heterogeneous nucleation process",
"analytical electron microscopy",
"Mg samples",
"orientation relationship",
"resolution TEM",
"heterogeneous nucleation",
"alloy",
"electron microscopy",
"nucleation mechanism",
"nucleation process",
"shearing",
"particles",
"solidification",
"melt",
"refiner",
"Mg",
"refinement",
"nucleation",
"MgO",
"TEM",
"grains",
"substrate",
"microscopy",
"plane",
"process",
"large number",
"samples",
"addition",
"mechanism",
"number",
"relationship",
"inoculation"
],
"name": "Grain Refinement of Mg and Its Alloy by Inoculation of In Situ MgO Particles",
"pagination": "99-106",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1083823114"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-52392-7_17"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-52392-7_17",
"https://app.dimensions.ai/details/publication/pub.1083823114"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:45",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_306.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-52392-7_17"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-52392-7_17'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-52392-7_17'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-52392-7_17'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-52392-7_17'
This table displays all metadata directly associated to this object as RDF triples.
137 TRIPLES
23 PREDICATES
74 URIs
67 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-52392-7_17 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | Ne0bfeaf244bc4680b9ce2ad044ee96c5 |
4 | ″ | schema:datePublished | 2017-02-16 |
5 | ″ | schema:datePublishedReg | 2017-02-16 |
6 | ″ | schema:description | Significant grain refinement of commercial purity Mg and AZ91D Mg alloy was achieved by intensive melt shearing imposed to the melts prior to solidification without addition of grain refiner. Heterogeneous nucleation mechanism was investigated using analytical electron microscopy. It was demonstrated that the grain refinement was resulted from the promoted heterogeneous nucleation by inoculation of in situ MgO particles, which had been effectively dispersed by melt shearing. It was shown that MgO formed in pure Mg and AZ91D alloy melts were {1 0 0} and {1 1 1} faceted, respectively. For pure Mg sample, high resolution TEM revealed two orientation relationships OR I: (1 0 0) [0 −1 1] MgO // (0 −1 1 2) [0 1 −1 1] Mg, and OR II (1 0 0) [0 −1 1] MgO // (1 −1 0 2) [−2 4 −2 3] Mg. For the alloy sample, however, α-Mg grain was found to nucleate on the faceted {1 1 1} planes of MgO particles according to the OR III: (1 1 1) [0 −1 1] MgO // (0 0 0 1) [1 1 −2 0] Mg. The large number of MgO particles dispersed by intensive melt shearing acted as the substrates to promote heterogeneous nucleation process, leading to the significant grain refinement. |
7 | ″ | schema:editor | N2d7c3084251741e9963652a950fcbeb0 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N1587a0bdbd1e4118bc4cac63ec977b70 |
12 | ″ | schema:keywords | AZ91D Mg alloy |
13 | ″ | ″ | Mg |
14 | ″ | ″ | Mg alloy |
15 | ″ | ″ | Mg samples |
16 | ″ | ″ | MgO |
17 | ″ | ″ | MgO particles |
18 | ″ | ″ | TEM |
19 | ″ | ″ | addition |
20 | ″ | ″ | alloy |
21 | ″ | ″ | alloy melt |
22 | ″ | ″ | alloy samples |
23 | ″ | ″ | analytical electron microscopy |
24 | ″ | ″ | commercial purity Mg |
25 | ″ | ″ | electron microscopy |
26 | ″ | ″ | grain refinement |
27 | ″ | ″ | grain refiner |
28 | ″ | ″ | grains |
29 | ″ | ″ | heterogeneous nucleation |
30 | ″ | ″ | heterogeneous nucleation mechanism |
31 | ″ | ″ | heterogeneous nucleation process |
32 | ″ | ″ | high-resolution TEM |
33 | ″ | ″ | inoculation |
34 | ″ | ″ | intensive melt shearing |
35 | ″ | ″ | large number |
36 | ″ | ″ | mechanism |
37 | ″ | ″ | melt |
38 | ″ | ″ | melt shearing |
39 | ″ | ″ | microscopy |
40 | ″ | ″ | nucleation |
41 | ″ | ″ | nucleation mechanism |
42 | ″ | ″ | nucleation process |
43 | ″ | ″ | number |
44 | ″ | ″ | orientation relationship |
45 | ″ | ″ | particles |
46 | ″ | ″ | plane |
47 | ″ | ″ | process |
48 | ″ | ″ | pure Mg |
49 | ″ | ″ | pure Mg samples |
50 | ″ | ″ | purity Mg |
51 | ″ | ″ | refinement |
52 | ″ | ″ | refiner |
53 | ″ | ″ | relationship |
54 | ″ | ″ | resolution TEM |
55 | ″ | ″ | samples |
56 | ″ | ″ | shearing |
57 | ″ | ″ | significant grain refinement |
58 | ″ | ″ | solidification |
59 | ″ | ″ | substrate |
60 | ″ | ″ | α-Mg grains |
61 | ″ | schema:name | Grain Refinement of Mg and Its Alloy by Inoculation of In Situ MgO Particles |
62 | ″ | schema:pagination | 99-106 |
63 | ″ | schema:productId | Nbf028ba4fb8047d69250c3f362d0b57f |
64 | ″ | ″ | Nff8a73c81f824646921a5656d3c7dcbb |
65 | ″ | schema:publisher | N047385d7c7bb4c419946acaf1690fcb5 |
66 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1083823114 |
67 | ″ | ″ | https://doi.org/10.1007/978-3-319-52392-7_17 |
68 | ″ | schema:sdDatePublished | 2022-05-20T07:45 |
69 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
70 | ″ | schema:sdPublisher | N73ccc8ed660e4d118645822193764a22 |
71 | ″ | schema:url | https://doi.org/10.1007/978-3-319-52392-7_17 |
72 | ″ | sgo:license | sg:explorer/license/ |
73 | ″ | sgo:sdDataset | chapters |
74 | ″ | rdf:type | schema:Chapter |
75 | N047385d7c7bb4c419946acaf1690fcb5 | schema:name | Springer Nature |
76 | ″ | rdf:type | schema:Organisation |
77 | N1587a0bdbd1e4118bc4cac63ec977b70 | schema:isbn | 978-3-319-52391-0 |
78 | ″ | ″ | 978-3-319-52392-7 |
79 | ″ | schema:name | Magnesium Technology 2017 |
80 | ″ | rdf:type | schema:Book |
81 | N2d7c3084251741e9963652a950fcbeb0 | rdf:first | Ndaef19d95757494690fe4b33f681e837 |
82 | ″ | rdf:rest | Nb2927b0c519244689f2d586103342629 |
83 | N4a5bbbed01a148468245df7ed41ba0ba | schema:affiliation | grid-institutes:grid.7728.a |
84 | ″ | schema:familyName | Peng |
85 | ″ | schema:givenName | Guosheng |
86 | ″ | rdf:type | schema:Person |
87 | N4bc1ee1568fc4540bcd1b09780ce59a3 | rdf:first | sg:person.014202761657.20 |
88 | ″ | rdf:rest | rdf:nil |
89 | N72b161308c3844cdb803e7a9d1b0bfaf | rdf:first | Ne1fd63b915d9462a9fc68ca3d33d4051 |
90 | ″ | rdf:rest | rdf:nil |
91 | N73ccc8ed660e4d118645822193764a22 | schema:name | Springer Nature - SN SciGraph project |
92 | ″ | rdf:type | schema:Organization |
93 | Nb2927b0c519244689f2d586103342629 | rdf:first | Nb96658fe29ab4ff6831738c6cd4589c5 |
94 | ″ | rdf:rest | Nf8a94a14917a4fc7a256656890ed6331 |
95 | Nb96658fe29ab4ff6831738c6cd4589c5 | schema:familyName | Orlov |
96 | ″ | schema:givenName | Dmytro |
97 | ″ | rdf:type | schema:Person |
98 | Nbf028ba4fb8047d69250c3f362d0b57f | schema:name | doi |
99 | ″ | schema:value | 10.1007/978-3-319-52392-7_17 |
100 | ″ | rdf:type | schema:PropertyValue |
101 | Ndaef19d95757494690fe4b33f681e837 | schema:familyName | Solanki |
102 | ″ | schema:givenName | Kiran N. |
103 | ″ | rdf:type | schema:Person |
104 | Ndcca49d26e534a30bb952a602b06ec12 | schema:familyName | Singh |
105 | ″ | schema:givenName | Alok |
106 | ″ | rdf:type | schema:Person |
107 | Ne0bfeaf244bc4680b9ce2ad044ee96c5 | rdf:first | sg:person.013031122415.15 |
108 | ″ | rdf:rest | Nf2d2b07061d449d697e2ae21c5166533 |
109 | Ne1fd63b915d9462a9fc68ca3d33d4051 | schema:familyName | Neelameggham |
110 | ″ | schema:givenName | Neale R. |
111 | ″ | rdf:type | schema:Person |
112 | Nf2d2b07061d449d697e2ae21c5166533 | rdf:first | N4a5bbbed01a148468245df7ed41ba0ba |
113 | ″ | rdf:rest | N4bc1ee1568fc4540bcd1b09780ce59a3 |
114 | Nf8a94a14917a4fc7a256656890ed6331 | rdf:first | Ndcca49d26e534a30bb952a602b06ec12 |
115 | ″ | rdf:rest | N72b161308c3844cdb803e7a9d1b0bfaf |
116 | Nff8a73c81f824646921a5656d3c7dcbb | schema:name | dimensions_id |
117 | ″ | schema:value | pub.1083823114 |
118 | ″ | rdf:type | schema:PropertyValue |
119 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
120 | ″ | schema:name | Engineering |
121 | ″ | rdf:type | schema:DefinedTerm |
122 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
123 | ″ | schema:name | Materials Engineering |
124 | ″ | rdf:type | schema:DefinedTerm |
125 | sg:person.013031122415.15 | schema:affiliation | grid-institutes:grid.7728.a |
126 | ″ | schema:familyName | Wang |
127 | ″ | schema:givenName | Yun |
128 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013031122415.15 |
129 | ″ | rdf:type | schema:Person |
130 | sg:person.014202761657.20 | schema:affiliation | grid-institutes:grid.7728.a |
131 | ″ | schema:familyName | Fan |
132 | ″ | schema:givenName | Zhongyun |
133 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014202761657.20 |
134 | ″ | rdf:type | schema:Person |
135 | grid-institutes:grid.7728.a | schema:alternateName | LiME-Hub, BCAST, Brunel University London, UB8 3PH, Uxbridge, UK |
136 | ″ | schema:name | LiME-Hub, BCAST, Brunel University London, UB8 3PH, Uxbridge, UK |
137 | ″ | rdf:type | schema:Organization |