Grain Refinement of Mg and Its Alloy by Inoculation of In Situ MgO Particles View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-02-16

AUTHORS

Yun Wang , Guosheng Peng , Zhongyun Fan

ABSTRACT

Significant grain refinement of commercial purity Mg and AZ91D Mg alloy was achieved by intensive melt shearing imposed to the melts prior to solidification without addition of grain refiner. Heterogeneous nucleation mechanism was investigated using analytical electron microscopy. It was demonstrated that the grain refinement was resulted from the promoted heterogeneous nucleation by inoculation of in situ MgO particles, which had been effectively dispersed by melt shearing. It was shown that MgO formed in pure Mg and AZ91D alloy melts were {1 0 0} and {1 1 1} faceted, respectively. For pure Mg sample, high resolution TEM revealed two orientation relationships OR I: (1 0 0) [0 −1 1] MgO // (0 −1 1 2) [0 1 −1 1] Mg, and OR II (1 0 0) [0 −1 1] MgO // (1 −1 0 2) [−2 4 −2 3] Mg. For the alloy sample, however, α-Mg grain was found to nucleate on the faceted {1 1 1} planes of MgO particles according to the OR III: (1 1 1) [0 −1 1] MgO // (0 0 0 1) [1 1 −2 0] Mg. The large number of MgO particles dispersed by intensive melt shearing acted as the substrates to promote heterogeneous nucleation process, leading to the significant grain refinement. More... »

PAGES

99-106

Book

TITLE

Magnesium Technology 2017

ISBN

978-3-319-52391-0
978-3-319-52392-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-52392-7_17

DOI

http://dx.doi.org/10.1007/978-3-319-52392-7_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083823114


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "LiME-Hub, BCAST, Brunel University London, UB8 3PH, Uxbridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "LiME-Hub, BCAST, Brunel University London, UB8 3PH, Uxbridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yun", 
        "id": "sg:person.013031122415.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013031122415.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LiME-Hub, BCAST, Brunel University London, UB8 3PH, Uxbridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "LiME-Hub, BCAST, Brunel University London, UB8 3PH, Uxbridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Guosheng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LiME-Hub, BCAST, Brunel University London, UB8 3PH, Uxbridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "LiME-Hub, BCAST, Brunel University London, UB8 3PH, Uxbridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhongyun", 
        "id": "sg:person.014202761657.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014202761657.20"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-02-16", 
    "datePublishedReg": "2017-02-16", 
    "description": "Significant grain refinement of commercial purity Mg and AZ91D Mg alloy was achieved by intensive melt shearing imposed to the melts prior to solidification without addition of grain refiner. Heterogeneous nucleation mechanism was investigated using analytical electron microscopy. It was demonstrated that the grain refinement was resulted from the promoted heterogeneous nucleation by inoculation of in situ MgO particles, which had been effectively dispersed by melt shearing. It was shown that MgO formed in pure Mg and AZ91D alloy melts were {1 0 0} and {1 1 1} faceted, respectively. For pure Mg sample, high resolution TEM revealed two orientation relationships OR I: (1 0 0) [0 \u22121 1] MgO // (0 \u22121 1 2) [0 1 \u22121 1] Mg, and OR II (1 0 0) [0 \u22121 1] MgO // (1 \u22121 0 2) [\u22122 4 \u22122 3] Mg. For the alloy sample, however, \u03b1-Mg grain was found to nucleate on the faceted {1 1 1} planes of MgO particles according to the OR III: (1 1 1) [0 \u22121 1] MgO // (0 0 0 1) [1 1 \u22122 0] Mg. The large number of MgO particles dispersed by intensive melt shearing acted as the substrates to promote heterogeneous nucleation process, leading to the significant grain refinement.", 
    "editor": [
      {
        "familyName": "Solanki", 
        "givenName": "Kiran N.", 
        "type": "Person"
      }, 
      {
        "familyName": "Orlov", 
        "givenName": "Dmytro", 
        "type": "Person"
      }, 
      {
        "familyName": "Singh", 
        "givenName": "Alok", 
        "type": "Person"
      }, 
      {
        "familyName": "Neelameggham", 
        "givenName": "Neale R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-52392-7_17", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-52391-0", 
        "978-3-319-52392-7"
      ], 
      "name": "Magnesium Technology 2017", 
      "type": "Book"
    }, 
    "keywords": [
      "significant grain refinement", 
      "intensive melt shearing", 
      "grain refinement", 
      "melt shearing", 
      "MgO particles", 
      "AZ91D Mg alloy", 
      "\u03b1-Mg grains", 
      "commercial purity Mg", 
      "pure Mg samples", 
      "Mg alloy", 
      "purity Mg", 
      "grain refiner", 
      "pure Mg", 
      "alloy melt", 
      "high-resolution TEM", 
      "alloy samples", 
      "heterogeneous nucleation mechanism", 
      "heterogeneous nucleation process", 
      "analytical electron microscopy", 
      "Mg samples", 
      "orientation relationship", 
      "resolution TEM", 
      "heterogeneous nucleation", 
      "alloy", 
      "electron microscopy", 
      "nucleation mechanism", 
      "nucleation process", 
      "shearing", 
      "particles", 
      "solidification", 
      "melt", 
      "refiner", 
      "Mg", 
      "refinement", 
      "nucleation", 
      "MgO", 
      "TEM", 
      "grains", 
      "substrate", 
      "microscopy", 
      "plane", 
      "process", 
      "large number", 
      "samples", 
      "addition", 
      "mechanism", 
      "number", 
      "relationship", 
      "inoculation"
    ], 
    "name": "Grain Refinement of Mg and Its Alloy by Inoculation of In Situ MgO Particles", 
    "pagination": "99-106", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083823114"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-52392-7_17"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-52392-7_17", 
      "https://app.dimensions.ai/details/publication/pub.1083823114"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_306.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-52392-7_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-52392-7_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-52392-7_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-52392-7_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-52392-7_17'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      23 PREDICATES      74 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-52392-7_17 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ne0bfeaf244bc4680b9ce2ad044ee96c5
4 schema:datePublished 2017-02-16
5 schema:datePublishedReg 2017-02-16
6 schema:description Significant grain refinement of commercial purity Mg and AZ91D Mg alloy was achieved by intensive melt shearing imposed to the melts prior to solidification without addition of grain refiner. Heterogeneous nucleation mechanism was investigated using analytical electron microscopy. It was demonstrated that the grain refinement was resulted from the promoted heterogeneous nucleation by inoculation of in situ MgO particles, which had been effectively dispersed by melt shearing. It was shown that MgO formed in pure Mg and AZ91D alloy melts were {1 0 0} and {1 1 1} faceted, respectively. For pure Mg sample, high resolution TEM revealed two orientation relationships OR I: (1 0 0) [0 −1 1] MgO // (0 −1 1 2) [0 1 −1 1] Mg, and OR II (1 0 0) [0 −1 1] MgO // (1 −1 0 2) [−2 4 −2 3] Mg. For the alloy sample, however, α-Mg grain was found to nucleate on the faceted {1 1 1} planes of MgO particles according to the OR III: (1 1 1) [0 −1 1] MgO // (0 0 0 1) [1 1 −2 0] Mg. The large number of MgO particles dispersed by intensive melt shearing acted as the substrates to promote heterogeneous nucleation process, leading to the significant grain refinement.
7 schema:editor N2d7c3084251741e9963652a950fcbeb0
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N1587a0bdbd1e4118bc4cac63ec977b70
12 schema:keywords AZ91D Mg alloy
13 Mg
14 Mg alloy
15 Mg samples
16 MgO
17 MgO particles
18 TEM
19 addition
20 alloy
21 alloy melt
22 alloy samples
23 analytical electron microscopy
24 commercial purity Mg
25 electron microscopy
26 grain refinement
27 grain refiner
28 grains
29 heterogeneous nucleation
30 heterogeneous nucleation mechanism
31 heterogeneous nucleation process
32 high-resolution TEM
33 inoculation
34 intensive melt shearing
35 large number
36 mechanism
37 melt
38 melt shearing
39 microscopy
40 nucleation
41 nucleation mechanism
42 nucleation process
43 number
44 orientation relationship
45 particles
46 plane
47 process
48 pure Mg
49 pure Mg samples
50 purity Mg
51 refinement
52 refiner
53 relationship
54 resolution TEM
55 samples
56 shearing
57 significant grain refinement
58 solidification
59 substrate
60 α-Mg grains
61 schema:name Grain Refinement of Mg and Its Alloy by Inoculation of In Situ MgO Particles
62 schema:pagination 99-106
63 schema:productId Nbf028ba4fb8047d69250c3f362d0b57f
64 Nff8a73c81f824646921a5656d3c7dcbb
65 schema:publisher N047385d7c7bb4c419946acaf1690fcb5
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083823114
67 https://doi.org/10.1007/978-3-319-52392-7_17
68 schema:sdDatePublished 2022-05-20T07:45
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N73ccc8ed660e4d118645822193764a22
71 schema:url https://doi.org/10.1007/978-3-319-52392-7_17
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N047385d7c7bb4c419946acaf1690fcb5 schema:name Springer Nature
76 rdf:type schema:Organisation
77 N1587a0bdbd1e4118bc4cac63ec977b70 schema:isbn 978-3-319-52391-0
78 978-3-319-52392-7
79 schema:name Magnesium Technology 2017
80 rdf:type schema:Book
81 N2d7c3084251741e9963652a950fcbeb0 rdf:first Ndaef19d95757494690fe4b33f681e837
82 rdf:rest Nb2927b0c519244689f2d586103342629
83 N4a5bbbed01a148468245df7ed41ba0ba schema:affiliation grid-institutes:grid.7728.a
84 schema:familyName Peng
85 schema:givenName Guosheng
86 rdf:type schema:Person
87 N4bc1ee1568fc4540bcd1b09780ce59a3 rdf:first sg:person.014202761657.20
88 rdf:rest rdf:nil
89 N72b161308c3844cdb803e7a9d1b0bfaf rdf:first Ne1fd63b915d9462a9fc68ca3d33d4051
90 rdf:rest rdf:nil
91 N73ccc8ed660e4d118645822193764a22 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Nb2927b0c519244689f2d586103342629 rdf:first Nb96658fe29ab4ff6831738c6cd4589c5
94 rdf:rest Nf8a94a14917a4fc7a256656890ed6331
95 Nb96658fe29ab4ff6831738c6cd4589c5 schema:familyName Orlov
96 schema:givenName Dmytro
97 rdf:type schema:Person
98 Nbf028ba4fb8047d69250c3f362d0b57f schema:name doi
99 schema:value 10.1007/978-3-319-52392-7_17
100 rdf:type schema:PropertyValue
101 Ndaef19d95757494690fe4b33f681e837 schema:familyName Solanki
102 schema:givenName Kiran N.
103 rdf:type schema:Person
104 Ndcca49d26e534a30bb952a602b06ec12 schema:familyName Singh
105 schema:givenName Alok
106 rdf:type schema:Person
107 Ne0bfeaf244bc4680b9ce2ad044ee96c5 rdf:first sg:person.013031122415.15
108 rdf:rest Nf2d2b07061d449d697e2ae21c5166533
109 Ne1fd63b915d9462a9fc68ca3d33d4051 schema:familyName Neelameggham
110 schema:givenName Neale R.
111 rdf:type schema:Person
112 Nf2d2b07061d449d697e2ae21c5166533 rdf:first N4a5bbbed01a148468245df7ed41ba0ba
113 rdf:rest N4bc1ee1568fc4540bcd1b09780ce59a3
114 Nf8a94a14917a4fc7a256656890ed6331 rdf:first Ndcca49d26e534a30bb952a602b06ec12
115 rdf:rest N72b161308c3844cdb803e7a9d1b0bfaf
116 Nff8a73c81f824646921a5656d3c7dcbb schema:name dimensions_id
117 schema:value pub.1083823114
118 rdf:type schema:PropertyValue
119 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
120 schema:name Engineering
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
123 schema:name Materials Engineering
124 rdf:type schema:DefinedTerm
125 sg:person.013031122415.15 schema:affiliation grid-institutes:grid.7728.a
126 schema:familyName Wang
127 schema:givenName Yun
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013031122415.15
129 rdf:type schema:Person
130 sg:person.014202761657.20 schema:affiliation grid-institutes:grid.7728.a
131 schema:familyName Fan
132 schema:givenName Zhongyun
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014202761657.20
134 rdf:type schema:Person
135 grid-institutes:grid.7728.a schema:alternateName LiME-Hub, BCAST, Brunel University London, UB8 3PH, Uxbridge, UK
136 schema:name LiME-Hub, BCAST, Brunel University London, UB8 3PH, Uxbridge, UK
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...