Advanced Road Vanishing Point Detection by Using Weber Adaptive Local Filter View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Xue Fan , Yunfan Chen , Jingchun Piao , Irfan Riaz , Han Xie , Hyunchul Shin

ABSTRACT

Variations in road types and its ambient environment make the single image based vanishing point detection a challenging task. Since only road trails (e.g. road edges, ruts, and tire tracks) would contribute informative votes to vanishing point detection, the Weber adaptive local filter is proposed to distinguish the road trails from background noise, which is envisioned to reduce the workload and to eliminate uninformative votes introduced by the background noise. This is possible by controlling the number of neighbors and by increasing the sensitivity for small values of the local excitation response. After road trail extraction, the generalized Laplacian of Gaussian (gLoG) filters are applied to estimate the texture orientation of those road trail pixels. Then, the vanishing point is detected based on the adaptive soft voting scheme. The experimental results on the benchmark dataset demonstrate that the proposed method is about 2 times faster in detection speed and outperforms by 1.3% in detection accuracy, when compared to the complete texture based gLoG method, which is a well-known state-of-the-art approach. More... »

PAGES

3-13

References to SciGraph publications

Book

TITLE

Internet of Vehicles – Technologies and Services

ISBN

978-3-319-51968-5
978-3-319-51969-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-51969-2_1

DOI

http://dx.doi.org/10.1007/978-3-319-51969-2_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1054073183


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Electronics and Communication Engineering Hanyang University Ansan Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Xue", 
        "id": "sg:person.012626560265.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012626560265.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Electronics and Communication Engineering Hanyang University Ansan Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yunfan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Electronics and Communication Engineering Hanyang University Ansan Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Piao", 
        "givenName": "Jingchun", 
        "id": "sg:person.011234351061.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011234351061.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Electronics and Communication Engineering Hanyang University Ansan Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Riaz", 
        "givenName": "Irfan", 
        "id": "sg:person.011360325077.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011360325077.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Electronics and Communication Engineering Hanyang University Ansan Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Han", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Electronics and Communication Engineering Hanyang University Ansan Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Hyunchul", 
        "id": "sg:person.014346227077.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014346227077.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-74607-2_76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047597744", 
          "https://doi.org/10.1007/978-3-540-74607-2_76"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74607-2_76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047597744", 
          "https://doi.org/10.1007/978-3-540-74607-2_76"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2009.155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048054623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2010.2045715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061642484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tits.2006.869595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061657380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tits.2012.2216878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061658048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2012.2228639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061797604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2004.1315069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093321059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ivs.2007.4290133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093816311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/itsc.2006.1707444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094845451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2009.5206787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095322769"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "Variations in road types and its ambient environment make the single image based vanishing point detection a challenging task. Since only road trails (e.g. road edges, ruts, and tire tracks) would contribute informative votes to vanishing point detection, the Weber adaptive local filter is proposed to distinguish the road trails from background noise, which is envisioned to reduce the workload and to eliminate uninformative votes introduced by the background noise. This is possible by controlling the number of neighbors and by increasing the sensitivity for small values of the local excitation response. After road trail extraction, the generalized Laplacian of Gaussian (gLoG) filters are applied to estimate the texture orientation of those road trail pixels. Then, the vanishing point is detected based on the adaptive soft voting scheme. The experimental results on the benchmark dataset demonstrate that the proposed method is about 2 times faster in detection speed and outperforms by 1.3% in detection accuracy, when compared to the complete texture based gLoG method, which is a well-known state-of-the-art approach.", 
    "editor": [
      {
        "familyName": "Hsu", 
        "givenName": "Ching-Hsien", 
        "type": "Person"
      }, 
      {
        "familyName": "Wang", 
        "givenName": "Shangguang", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhou", 
        "givenName": "Ao", 
        "type": "Person"
      }, 
      {
        "familyName": "Shawkat", 
        "givenName": "Ali", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-51969-2_1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-51968-5", 
        "978-3-319-51969-2"
      ], 
      "name": "Internet of Vehicles \u2013 Technologies and Services", 
      "type": "Book"
    }, 
    "name": "Advanced Road Vanishing Point Detection by Using Weber Adaptive Local Filter", 
    "pagination": "3-13", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-51969-2_1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f2bd6c2c27b491ee04ea89672351b54dbcbf15098c2db010383c09a74a9f8584"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1054073183"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-51969-2_1", 
      "https://app.dimensions.ai/details/publication/pub.1054073183"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T12:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000277.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-51969-2_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-51969-2_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-51969-2_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-51969-2_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-51969-2_1'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-51969-2_1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ndce50fc58d9d48afad679ede5246cdec
4 schema:citation sg:pub.10.1007/978-3-540-74607-2_76
5 https://doi.org/10.1109/cvpr.2004.1315069
6 https://doi.org/10.1109/cvpr.2009.5206787
7 https://doi.org/10.1109/itsc.2006.1707444
8 https://doi.org/10.1109/ivs.2007.4290133
9 https://doi.org/10.1109/tip.2010.2045715
10 https://doi.org/10.1109/tits.2006.869595
11 https://doi.org/10.1109/tits.2012.2216878
12 https://doi.org/10.1109/tpami.2009.155
13 https://doi.org/10.1109/tsmcb.2012.2228639
14 schema:datePublished 2016
15 schema:datePublishedReg 2016-01-01
16 schema:description Variations in road types and its ambient environment make the single image based vanishing point detection a challenging task. Since only road trails (e.g. road edges, ruts, and tire tracks) would contribute informative votes to vanishing point detection, the Weber adaptive local filter is proposed to distinguish the road trails from background noise, which is envisioned to reduce the workload and to eliminate uninformative votes introduced by the background noise. This is possible by controlling the number of neighbors and by increasing the sensitivity for small values of the local excitation response. After road trail extraction, the generalized Laplacian of Gaussian (gLoG) filters are applied to estimate the texture orientation of those road trail pixels. Then, the vanishing point is detected based on the adaptive soft voting scheme. The experimental results on the benchmark dataset demonstrate that the proposed method is about 2 times faster in detection speed and outperforms by 1.3% in detection accuracy, when compared to the complete texture based gLoG method, which is a well-known state-of-the-art approach.
17 schema:editor N12de6658d3754f9dbff018d3c3410b8f
18 schema:genre chapter
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N1f5de2087d1843c6a1296ea6ed812fa0
22 schema:name Advanced Road Vanishing Point Detection by Using Weber Adaptive Local Filter
23 schema:pagination 3-13
24 schema:productId N07bf3f390ca34f25850f487ac5b84d92
25 N55cd625026d74d89a11db2dd2e50dd4b
26 Ncc79aeeec452456ab8705217d1eb691f
27 schema:publisher Nfc15a459b38040e9b072497aec664fa8
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054073183
29 https://doi.org/10.1007/978-3-319-51969-2_1
30 schema:sdDatePublished 2019-04-15T12:35
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N61ba3e18276444c38fe9991f82ccfb77
33 schema:url http://link.springer.com/10.1007/978-3-319-51969-2_1
34 sgo:license sg:explorer/license/
35 sgo:sdDataset chapters
36 rdf:type schema:Chapter
37 N07bf3f390ca34f25850f487ac5b84d92 schema:name doi
38 schema:value 10.1007/978-3-319-51969-2_1
39 rdf:type schema:PropertyValue
40 N0c8ccfc8dfb24cf480b3d0b169c2dd09 rdf:first Naaa8ac224688428098c2545e701a29be
41 rdf:rest N46d35fd6540b428fbfb77f0395bd675e
42 N0cacbe8e01944bff94e751409e3f89d3 rdf:first N94be8bf59ad04c1ca4f3d19eb0369d82
43 rdf:rest N7f7ef59d885440a4a4f4a0008fd35433
44 N12de6658d3754f9dbff018d3c3410b8f rdf:first Nd7cd9e630aa14b05a1eaeb4d11940b70
45 rdf:rest N0cacbe8e01944bff94e751409e3f89d3
46 N1f5de2087d1843c6a1296ea6ed812fa0 schema:isbn 978-3-319-51968-5
47 978-3-319-51969-2
48 schema:name Internet of Vehicles – Technologies and Services
49 rdf:type schema:Book
50 N20fd9be53ce84f008841561cdc7a0471 schema:familyName Zhou
51 schema:givenName Ao
52 rdf:type schema:Person
53 N2fdd23494752406690ddfc06394679f9 schema:name Department of Electronics and Communication Engineering Hanyang University Ansan Republic of Korea
54 rdf:type schema:Organization
55 N46d35fd6540b428fbfb77f0395bd675e rdf:first sg:person.011234351061.16
56 rdf:rest N729b86e0438a405b8a97f65eed93e319
57 N4f7243451f2347e797a6b8d048315dfe schema:name Department of Electronics and Communication Engineering Hanyang University Ansan Republic of Korea
58 rdf:type schema:Organization
59 N55cd625026d74d89a11db2dd2e50dd4b schema:name readcube_id
60 schema:value f2bd6c2c27b491ee04ea89672351b54dbcbf15098c2db010383c09a74a9f8584
61 rdf:type schema:PropertyValue
62 N61ba3e18276444c38fe9991f82ccfb77 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N6a1a3939f6054de086ca640ca3dbe538 schema:affiliation Nff535289545a464d96ebe2b2dd4672b3
65 schema:familyName Xie
66 schema:givenName Han
67 rdf:type schema:Person
68 N729b86e0438a405b8a97f65eed93e319 rdf:first sg:person.011360325077.33
69 rdf:rest N7bcd50bb5adf488e8dac40f356bbd103
70 N7bcd50bb5adf488e8dac40f356bbd103 rdf:first N6a1a3939f6054de086ca640ca3dbe538
71 rdf:rest Nd20a7e52bf9d4f409f398f871c57a3a0
72 N7ee7e21bf59542129601510de0c6ba2b schema:name Department of Electronics and Communication Engineering Hanyang University Ansan Republic of Korea
73 rdf:type schema:Organization
74 N7f7ef59d885440a4a4f4a0008fd35433 rdf:first N20fd9be53ce84f008841561cdc7a0471
75 rdf:rest N9dc5d2323bbb4e7b85800828b19d3fab
76 N94be8bf59ad04c1ca4f3d19eb0369d82 schema:familyName Wang
77 schema:givenName Shangguang
78 rdf:type schema:Person
79 N9dc5d2323bbb4e7b85800828b19d3fab rdf:first Nfc558c7268ea4a57a20d4a662052e9a6
80 rdf:rest rdf:nil
81 Na8c53ebb861a4a58b721f03b8625151a schema:name Department of Electronics and Communication Engineering Hanyang University Ansan Republic of Korea
82 rdf:type schema:Organization
83 Naaa8ac224688428098c2545e701a29be schema:affiliation N4f7243451f2347e797a6b8d048315dfe
84 schema:familyName Chen
85 schema:givenName Yunfan
86 rdf:type schema:Person
87 Ncc79aeeec452456ab8705217d1eb691f schema:name dimensions_id
88 schema:value pub.1054073183
89 rdf:type schema:PropertyValue
90 Nd20a7e52bf9d4f409f398f871c57a3a0 rdf:first sg:person.014346227077.66
91 rdf:rest rdf:nil
92 Nd7cd9e630aa14b05a1eaeb4d11940b70 schema:familyName Hsu
93 schema:givenName Ching-Hsien
94 rdf:type schema:Person
95 Ndce50fc58d9d48afad679ede5246cdec rdf:first sg:person.012626560265.67
96 rdf:rest N0c8ccfc8dfb24cf480b3d0b169c2dd09
97 Nf4f2a58688a443f2bdb3792a6d0a9478 schema:name Department of Electronics and Communication Engineering Hanyang University Ansan Republic of Korea
98 rdf:type schema:Organization
99 Nfc15a459b38040e9b072497aec664fa8 schema:location Cham
100 schema:name Springer International Publishing
101 rdf:type schema:Organisation
102 Nfc558c7268ea4a57a20d4a662052e9a6 schema:familyName Shawkat
103 schema:givenName Ali
104 rdf:type schema:Person
105 Nff535289545a464d96ebe2b2dd4672b3 schema:name Department of Electronics and Communication Engineering Hanyang University Ansan Republic of Korea
106 rdf:type schema:Organization
107 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
108 schema:name Information and Computing Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
111 schema:name Artificial Intelligence and Image Processing
112 rdf:type schema:DefinedTerm
113 sg:person.011234351061.16 schema:affiliation N7ee7e21bf59542129601510de0c6ba2b
114 schema:familyName Piao
115 schema:givenName Jingchun
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011234351061.16
117 rdf:type schema:Person
118 sg:person.011360325077.33 schema:affiliation Na8c53ebb861a4a58b721f03b8625151a
119 schema:familyName Riaz
120 schema:givenName Irfan
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011360325077.33
122 rdf:type schema:Person
123 sg:person.012626560265.67 schema:affiliation N2fdd23494752406690ddfc06394679f9
124 schema:familyName Fan
125 schema:givenName Xue
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012626560265.67
127 rdf:type schema:Person
128 sg:person.014346227077.66 schema:affiliation Nf4f2a58688a443f2bdb3792a6d0a9478
129 schema:familyName Shin
130 schema:givenName Hyunchul
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014346227077.66
132 rdf:type schema:Person
133 sg:pub.10.1007/978-3-540-74607-2_76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047597744
134 https://doi.org/10.1007/978-3-540-74607-2_76
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/cvpr.2004.1315069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093321059
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/cvpr.2009.5206787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095322769
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/itsc.2006.1707444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094845451
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/ivs.2007.4290133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093816311
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/tip.2010.2045715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061642484
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/tits.2006.869595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061657380
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tits.2012.2216878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061658048
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tpami.2009.155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048054623
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/tsmcb.2012.2228639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061797604
153 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...