Advanced Road Vanishing Point Detection by Using Weber Adaptive Local Filter View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Xue Fan , Yunfan Chen , Jingchun Piao , Irfan Riaz , Han Xie , Hyunchul Shin

ABSTRACT

Variations in road types and its ambient environment make the single image based vanishing point detection a challenging task. Since only road trails (e.g. road edges, ruts, and tire tracks) would contribute informative votes to vanishing point detection, the Weber adaptive local filter is proposed to distinguish the road trails from background noise, which is envisioned to reduce the workload and to eliminate uninformative votes introduced by the background noise. This is possible by controlling the number of neighbors and by increasing the sensitivity for small values of the local excitation response. After road trail extraction, the generalized Laplacian of Gaussian (gLoG) filters are applied to estimate the texture orientation of those road trail pixels. Then, the vanishing point is detected based on the adaptive soft voting scheme. The experimental results on the benchmark dataset demonstrate that the proposed method is about 2 times faster in detection speed and outperforms by 1.3% in detection accuracy, when compared to the complete texture based gLoG method, which is a well-known state-of-the-art approach. More... »

PAGES

3-13

References to SciGraph publications

Book

TITLE

Internet of Vehicles – Technologies and Services

ISBN

978-3-319-51968-5
978-3-319-51969-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-51969-2_1

DOI

http://dx.doi.org/10.1007/978-3-319-51969-2_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1054073183


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Electronics and Communication Engineering Hanyang University Ansan Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Xue", 
        "id": "sg:person.012626560265.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012626560265.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Electronics and Communication Engineering Hanyang University Ansan Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yunfan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Electronics and Communication Engineering Hanyang University Ansan Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Piao", 
        "givenName": "Jingchun", 
        "id": "sg:person.011234351061.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011234351061.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Electronics and Communication Engineering Hanyang University Ansan Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Riaz", 
        "givenName": "Irfan", 
        "id": "sg:person.011360325077.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011360325077.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Electronics and Communication Engineering Hanyang University Ansan Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Han", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Electronics and Communication Engineering Hanyang University Ansan Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Hyunchul", 
        "id": "sg:person.014346227077.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014346227077.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-74607-2_76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047597744", 
          "https://doi.org/10.1007/978-3-540-74607-2_76"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74607-2_76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047597744", 
          "https://doi.org/10.1007/978-3-540-74607-2_76"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2009.155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048054623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2010.2045715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061642484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tits.2006.869595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061657380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tits.2012.2216878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061658048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2012.2228639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061797604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2004.1315069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093321059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ivs.2007.4290133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093816311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/itsc.2006.1707444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094845451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2009.5206787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095322769"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "Variations in road types and its ambient environment make the single image based vanishing point detection a challenging task. Since only road trails (e.g. road edges, ruts, and tire tracks) would contribute informative votes to vanishing point detection, the Weber adaptive local filter is proposed to distinguish the road trails from background noise, which is envisioned to reduce the workload and to eliminate uninformative votes introduced by the background noise. This is possible by controlling the number of neighbors and by increasing the sensitivity for small values of the local excitation response. After road trail extraction, the generalized Laplacian of Gaussian (gLoG) filters are applied to estimate the texture orientation of those road trail pixels. Then, the vanishing point is detected based on the adaptive soft voting scheme. The experimental results on the benchmark dataset demonstrate that the proposed method is about 2 times faster in detection speed and outperforms by 1.3% in detection accuracy, when compared to the complete texture based gLoG method, which is a well-known state-of-the-art approach.", 
    "editor": [
      {
        "familyName": "Hsu", 
        "givenName": "Ching-Hsien", 
        "type": "Person"
      }, 
      {
        "familyName": "Wang", 
        "givenName": "Shangguang", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhou", 
        "givenName": "Ao", 
        "type": "Person"
      }, 
      {
        "familyName": "Shawkat", 
        "givenName": "Ali", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-51969-2_1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-51968-5", 
        "978-3-319-51969-2"
      ], 
      "name": "Internet of Vehicles \u2013 Technologies and Services", 
      "type": "Book"
    }, 
    "name": "Advanced Road Vanishing Point Detection by Using Weber Adaptive Local Filter", 
    "pagination": "3-13", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-51969-2_1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f2bd6c2c27b491ee04ea89672351b54dbcbf15098c2db010383c09a74a9f8584"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1054073183"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-51969-2_1", 
      "https://app.dimensions.ai/details/publication/pub.1054073183"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T12:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000277.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-51969-2_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-51969-2_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-51969-2_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-51969-2_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-51969-2_1'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-51969-2_1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N1a0c1e6638c74f9c96054f3e14a4c6e8
4 schema:citation sg:pub.10.1007/978-3-540-74607-2_76
5 https://doi.org/10.1109/cvpr.2004.1315069
6 https://doi.org/10.1109/cvpr.2009.5206787
7 https://doi.org/10.1109/itsc.2006.1707444
8 https://doi.org/10.1109/ivs.2007.4290133
9 https://doi.org/10.1109/tip.2010.2045715
10 https://doi.org/10.1109/tits.2006.869595
11 https://doi.org/10.1109/tits.2012.2216878
12 https://doi.org/10.1109/tpami.2009.155
13 https://doi.org/10.1109/tsmcb.2012.2228639
14 schema:datePublished 2016
15 schema:datePublishedReg 2016-01-01
16 schema:description Variations in road types and its ambient environment make the single image based vanishing point detection a challenging task. Since only road trails (e.g. road edges, ruts, and tire tracks) would contribute informative votes to vanishing point detection, the Weber adaptive local filter is proposed to distinguish the road trails from background noise, which is envisioned to reduce the workload and to eliminate uninformative votes introduced by the background noise. This is possible by controlling the number of neighbors and by increasing the sensitivity for small values of the local excitation response. After road trail extraction, the generalized Laplacian of Gaussian (gLoG) filters are applied to estimate the texture orientation of those road trail pixels. Then, the vanishing point is detected based on the adaptive soft voting scheme. The experimental results on the benchmark dataset demonstrate that the proposed method is about 2 times faster in detection speed and outperforms by 1.3% in detection accuracy, when compared to the complete texture based gLoG method, which is a well-known state-of-the-art approach.
17 schema:editor Ne8c7b5668687401cac3b2aaab756fbef
18 schema:genre chapter
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf Nb1199c3a18b3475aa7131d0e79ac946b
22 schema:name Advanced Road Vanishing Point Detection by Using Weber Adaptive Local Filter
23 schema:pagination 3-13
24 schema:productId N5f81ea205873444d935b6e4e53735def
25 Nd968885e3abb40308a18b7233f348683
26 Ne5f6266966704189a6ed7ce3b4ef2206
27 schema:publisher N8b8919dc4f324c4a9176fd53170b4dc8
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054073183
29 https://doi.org/10.1007/978-3-319-51969-2_1
30 schema:sdDatePublished 2019-04-15T12:35
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Ne94962d6ba4a44c5a7e4f8d8846cb326
33 schema:url http://link.springer.com/10.1007/978-3-319-51969-2_1
34 sgo:license sg:explorer/license/
35 sgo:sdDataset chapters
36 rdf:type schema:Chapter
37 N03428b3c368a471e8850764481d7493c schema:familyName Shawkat
38 schema:givenName Ali
39 rdf:type schema:Person
40 N0ae5fdc5524045308b3db593a7110db7 schema:name Department of Electronics and Communication Engineering Hanyang University Ansan Republic of Korea
41 rdf:type schema:Organization
42 N15c134e3044f467684662e2a06b91be1 rdf:first N3279f38a25cb43a6a1b1d844a3702918
43 rdf:rest N24e0cac6ed63436ebf9bfd1ff916e902
44 N1a0c1e6638c74f9c96054f3e14a4c6e8 rdf:first sg:person.012626560265.67
45 rdf:rest N3767bb502ae847c3973ca6a9e08350a4
46 N1e42237ecd7947af88b640412db4070a schema:familyName Wang
47 schema:givenName Shangguang
48 rdf:type schema:Person
49 N22d160a58bc7470c925e7821622b96d8 rdf:first sg:person.011360325077.33
50 rdf:rest N5098c817af1f4fce92f2f775acbb5dfb
51 N24e0cac6ed63436ebf9bfd1ff916e902 rdf:first N03428b3c368a471e8850764481d7493c
52 rdf:rest rdf:nil
53 N3279f38a25cb43a6a1b1d844a3702918 schema:familyName Zhou
54 schema:givenName Ao
55 rdf:type schema:Person
56 N3767bb502ae847c3973ca6a9e08350a4 rdf:first Nd2b37b8d2f0040e1950e310631e77f46
57 rdf:rest Need030226ffc4fc79925c087f6ce6142
58 N5098c817af1f4fce92f2f775acbb5dfb rdf:first Nccd857007657456f8a3be0ea20aed9e2
59 rdf:rest N71a6ca759696409fb98ef2543956bf26
60 N57d6fabd08f7420aa06b7f2875c44994 rdf:first N1e42237ecd7947af88b640412db4070a
61 rdf:rest N15c134e3044f467684662e2a06b91be1
62 N589368d85173466cb494cf90c6168c1b schema:familyName Hsu
63 schema:givenName Ching-Hsien
64 rdf:type schema:Person
65 N5f81ea205873444d935b6e4e53735def schema:name readcube_id
66 schema:value f2bd6c2c27b491ee04ea89672351b54dbcbf15098c2db010383c09a74a9f8584
67 rdf:type schema:PropertyValue
68 N71a6ca759696409fb98ef2543956bf26 rdf:first sg:person.014346227077.66
69 rdf:rest rdf:nil
70 N87de032d00d243699711818a8c15d23d schema:name Department of Electronics and Communication Engineering Hanyang University Ansan Republic of Korea
71 rdf:type schema:Organization
72 N8b8919dc4f324c4a9176fd53170b4dc8 schema:location Cham
73 schema:name Springer International Publishing
74 rdf:type schema:Organisation
75 N9d95d0b1385e4f7d99937ae1eb8391de schema:name Department of Electronics and Communication Engineering Hanyang University Ansan Republic of Korea
76 rdf:type schema:Organization
77 Na5cc82e471024be78d81d6f506ecfaf5 schema:name Department of Electronics and Communication Engineering Hanyang University Ansan Republic of Korea
78 rdf:type schema:Organization
79 Nb1199c3a18b3475aa7131d0e79ac946b schema:isbn 978-3-319-51968-5
80 978-3-319-51969-2
81 schema:name Internet of Vehicles – Technologies and Services
82 rdf:type schema:Book
83 Nccd857007657456f8a3be0ea20aed9e2 schema:affiliation N0ae5fdc5524045308b3db593a7110db7
84 schema:familyName Xie
85 schema:givenName Han
86 rdf:type schema:Person
87 Nd2b37b8d2f0040e1950e310631e77f46 schema:affiliation Nedb7b42d19d24ed7af0c11a083bf2122
88 schema:familyName Chen
89 schema:givenName Yunfan
90 rdf:type schema:Person
91 Nd968885e3abb40308a18b7233f348683 schema:name doi
92 schema:value 10.1007/978-3-319-51969-2_1
93 rdf:type schema:PropertyValue
94 Nddccfe041e184aac824c84c08769b97a schema:name Department of Electronics and Communication Engineering Hanyang University Ansan Republic of Korea
95 rdf:type schema:Organization
96 Ne5f6266966704189a6ed7ce3b4ef2206 schema:name dimensions_id
97 schema:value pub.1054073183
98 rdf:type schema:PropertyValue
99 Ne8c7b5668687401cac3b2aaab756fbef rdf:first N589368d85173466cb494cf90c6168c1b
100 rdf:rest N57d6fabd08f7420aa06b7f2875c44994
101 Ne94962d6ba4a44c5a7e4f8d8846cb326 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 Nedb7b42d19d24ed7af0c11a083bf2122 schema:name Department of Electronics and Communication Engineering Hanyang University Ansan Republic of Korea
104 rdf:type schema:Organization
105 Need030226ffc4fc79925c087f6ce6142 rdf:first sg:person.011234351061.16
106 rdf:rest N22d160a58bc7470c925e7821622b96d8
107 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
108 schema:name Information and Computing Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
111 schema:name Artificial Intelligence and Image Processing
112 rdf:type schema:DefinedTerm
113 sg:person.011234351061.16 schema:affiliation Na5cc82e471024be78d81d6f506ecfaf5
114 schema:familyName Piao
115 schema:givenName Jingchun
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011234351061.16
117 rdf:type schema:Person
118 sg:person.011360325077.33 schema:affiliation N9d95d0b1385e4f7d99937ae1eb8391de
119 schema:familyName Riaz
120 schema:givenName Irfan
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011360325077.33
122 rdf:type schema:Person
123 sg:person.012626560265.67 schema:affiliation Nddccfe041e184aac824c84c08769b97a
124 schema:familyName Fan
125 schema:givenName Xue
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012626560265.67
127 rdf:type schema:Person
128 sg:person.014346227077.66 schema:affiliation N87de032d00d243699711818a8c15d23d
129 schema:familyName Shin
130 schema:givenName Hyunchul
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014346227077.66
132 rdf:type schema:Person
133 sg:pub.10.1007/978-3-540-74607-2_76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047597744
134 https://doi.org/10.1007/978-3-540-74607-2_76
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/cvpr.2004.1315069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093321059
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/cvpr.2009.5206787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095322769
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/itsc.2006.1707444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094845451
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/ivs.2007.4290133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093816311
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/tip.2010.2045715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061642484
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/tits.2006.869595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061657380
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tits.2012.2216878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061658048
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tpami.2009.155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048054623
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/tsmcb.2012.2228639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061797604
153 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...