Evaluation of the State of Cutting Tools According to Its Texture Using LOSIB and LBP Variants View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-03-08

AUTHORS

Oscar García-Olalla , Laura Fernández-Robles , Eduardo Fidalgo , Víctor González-Castro , Enrique Alegre

ABSTRACT

The FRESVIDA project deals with the life assessment of cutting tools working under severe conditions using digital image processing techniques. The description of texture in materials through artificial vision techniques is very useful for this goal. There are several works based on Local Binary Patterns (LBP) and many variants such as Local Binary Pattern Variance (LBPV) or Diamond-LBP Code (DLBPCS) that have proved to be effective when distinguishing materials according to their texture. The Outex dataset comprises images from 24 materials acquired under different illumination conditions, becoming the present reference dataset for texture evaluation. In this work, several descriptors have been extracted based on the LBP from the Outex dataset, as well as their combination with LOSIB (Local Oriented Statistical Information Booster). All of them have been classified with Support Vector Machine (SVM) to assess which one is more useful for the above-mentioned task. In this case, all descriptors achieve a lower performance level combined with LOSIB because Outex is a data set that studies rotation invariances. More... »

PAGES

217-228

Book

TITLE

Project Management and Engineering Research

ISBN

978-3-319-51858-9
978-3-319-51859-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-51859-6_15

DOI

http://dx.doi.org/10.1007/978-3-319-51859-6_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084693060


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Le\u00f3n, Campus de Vegazana S/N, 24071, Le\u00f3n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "University of Le\u00f3n, Campus de Vegazana S/N, 24071, Le\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda-Olalla", 
        "givenName": "Oscar", 
        "id": "sg:person.015450152607.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015450152607.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Le\u00f3n, Campus de Vegazana S/N, 24071, Le\u00f3n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "University of Le\u00f3n, Campus de Vegazana S/N, 24071, Le\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fern\u00e1ndez-Robles", 
        "givenName": "Laura", 
        "id": "sg:person.010415303037.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010415303037.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Le\u00f3n, Campus de Vegazana S/N, 24071, Le\u00f3n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "University of Le\u00f3n, Campus de Vegazana S/N, 24071, Le\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fidalgo", 
        "givenName": "Eduardo", 
        "id": "sg:person.012664070017.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012664070017.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Edinburgh, Edinburgh, UK", 
          "id": "http://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "University of Edinburgh, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonz\u00e1lez-Castro", 
        "givenName": "V\u00edctor", 
        "id": "sg:person.010551001361.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010551001361.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Le\u00f3n, Campus de Vegazana S/N, 24071, Le\u00f3n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "University of Le\u00f3n, Campus de Vegazana S/N, 24071, Le\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alegre", 
        "givenName": "Enrique", 
        "id": "sg:person.016266057305.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016266057305.75"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-03-08", 
    "datePublishedReg": "2017-03-08", 
    "description": "The FRESVIDA project deals with the life assessment of cutting tools working under severe conditions using digital image processing techniques. The description of texture in materials through artificial vision techniques is very useful for this goal. There are several works based on Local Binary Patterns (LBP) and many variants such as Local Binary Pattern Variance (LBPV) or Diamond-LBP Code (DLBPCS) that have proved to be effective when distinguishing materials according to their texture. The Outex dataset comprises images from 24 materials acquired under different illumination conditions, becoming the present reference dataset for texture evaluation. In this work, several descriptors have been extracted based on the LBP from the Outex dataset, as well as their combination with LOSIB (Local Oriented Statistical Information Booster). All of them have been classified with Support Vector Machine (SVM) to assess which one is more useful for the above-mentioned task. In this case, all descriptors achieve a lower performance level combined with LOSIB because Outex is a data set that studies rotation invariances.", 
    "editor": [
      {
        "familyName": "Ayuso Mu\u00f1oz", 
        "givenName": "Jos\u00e9 Luis", 
        "type": "Person"
      }, 
      {
        "familyName": "Yag\u00fce Blanco", 
        "givenName": "Jos\u00e9 Luis", 
        "type": "Person"
      }, 
      {
        "familyName": "Capuz-Rizo", 
        "givenName": "Salvador F.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-51859-6_15", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-51858-9", 
        "978-3-319-51859-6"
      ], 
      "name": "Project Management and Engineering Research", 
      "type": "Book"
    }, 
    "keywords": [
      "Local Binary Pattern", 
      "Local Binary Pattern Variance", 
      "support vector machine", 
      "Outex dataset", 
      "artificial vision techniques", 
      "digital image processing techniques", 
      "image processing techniques", 
      "different illumination conditions", 
      "vision techniques", 
      "binary patterns", 
      "vector machine", 
      "LBP variants", 
      "description of texture", 
      "rotation invariance", 
      "illumination conditions", 
      "processing techniques", 
      "datasets", 
      "data sets", 
      "reference dataset", 
      "descriptors", 
      "performance levels", 
      "Outex", 
      "tool", 
      "machine", 
      "task", 
      "texture", 
      "images", 
      "code", 
      "technique", 
      "work", 
      "set", 
      "project", 
      "goal", 
      "evaluation", 
      "lower performance levels", 
      "description", 
      "variants", 
      "one", 
      "invariance", 
      "cutting tools", 
      "state", 
      "combination", 
      "texture evaluation", 
      "patterns", 
      "cases", 
      "conditions", 
      "variance", 
      "assessment", 
      "severe conditions", 
      "levels", 
      "materials", 
      "life assessment", 
      "FRESVIDA project", 
      "Binary Pattern Variance", 
      "Pattern Variance", 
      "Diamond-LBP Code", 
      "present reference dataset", 
      "LOSIB"
    ], 
    "name": "Evaluation of the State of Cutting Tools According to Its Texture Using LOSIB and LBP Variants", 
    "pagination": "217-228", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084693060"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-51859-6_15"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-51859-6_15", 
      "https://app.dimensions.ai/details/publication/pub.1084693060"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_249.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-51859-6_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-51859-6_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-51859-6_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-51859-6_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-51859-6_15'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      23 PREDICATES      83 URIs      76 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-51859-6_15 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0e53592357624e41bd7560a79e9b4842
4 schema:datePublished 2017-03-08
5 schema:datePublishedReg 2017-03-08
6 schema:description The FRESVIDA project deals with the life assessment of cutting tools working under severe conditions using digital image processing techniques. The description of texture in materials through artificial vision techniques is very useful for this goal. There are several works based on Local Binary Patterns (LBP) and many variants such as Local Binary Pattern Variance (LBPV) or Diamond-LBP Code (DLBPCS) that have proved to be effective when distinguishing materials according to their texture. The Outex dataset comprises images from 24 materials acquired under different illumination conditions, becoming the present reference dataset for texture evaluation. In this work, several descriptors have been extracted based on the LBP from the Outex dataset, as well as their combination with LOSIB (Local Oriented Statistical Information Booster). All of them have been classified with Support Vector Machine (SVM) to assess which one is more useful for the above-mentioned task. In this case, all descriptors achieve a lower performance level combined with LOSIB because Outex is a data set that studies rotation invariances.
7 schema:editor Nf5e44eb3ca614f818f4bf8326e8637dd
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Na68b13e9d62f454389b264b84d047a50
12 schema:keywords Binary Pattern Variance
13 Diamond-LBP Code
14 FRESVIDA project
15 LBP variants
16 LOSIB
17 Local Binary Pattern
18 Local Binary Pattern Variance
19 Outex
20 Outex dataset
21 Pattern Variance
22 artificial vision techniques
23 assessment
24 binary patterns
25 cases
26 code
27 combination
28 conditions
29 cutting tools
30 data sets
31 datasets
32 description
33 description of texture
34 descriptors
35 different illumination conditions
36 digital image processing techniques
37 evaluation
38 goal
39 illumination conditions
40 image processing techniques
41 images
42 invariance
43 levels
44 life assessment
45 lower performance levels
46 machine
47 materials
48 one
49 patterns
50 performance levels
51 present reference dataset
52 processing techniques
53 project
54 reference dataset
55 rotation invariance
56 set
57 severe conditions
58 state
59 support vector machine
60 task
61 technique
62 texture
63 texture evaluation
64 tool
65 variance
66 variants
67 vector machine
68 vision techniques
69 work
70 schema:name Evaluation of the State of Cutting Tools According to Its Texture Using LOSIB and LBP Variants
71 schema:pagination 217-228
72 schema:productId N90c3d783af834283b84f0494437ef04f
73 Nd82ad55a8aa7401da1fad1b46eb275e7
74 schema:publisher N898ca4c3d1e84f1998dd888a988d2aca
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084693060
76 https://doi.org/10.1007/978-3-319-51859-6_15
77 schema:sdDatePublished 2021-12-01T20:01
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N09d73407a21e46c3a141485103a85984
80 schema:url https://doi.org/10.1007/978-3-319-51859-6_15
81 sgo:license sg:explorer/license/
82 sgo:sdDataset chapters
83 rdf:type schema:Chapter
84 N09d73407a21e46c3a141485103a85984 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N0e53592357624e41bd7560a79e9b4842 rdf:first sg:person.015450152607.60
87 rdf:rest N7a67835b16b54aa8ae5df308b6e40e8a
88 N22a30b9eb58045ada0406a373364e073 schema:familyName Yagüe Blanco
89 schema:givenName José Luis
90 rdf:type schema:Person
91 N3a3bf657fe4747cabfacbfcc920524e1 rdf:first sg:person.012664070017.21
92 rdf:rest N3a87f73127b149e5b4567ff15a826b7f
93 N3a87f73127b149e5b4567ff15a826b7f rdf:first sg:person.010551001361.75
94 rdf:rest N6e75914b9f5a43a09015e6cce877e0f5
95 N6e75914b9f5a43a09015e6cce877e0f5 rdf:first sg:person.016266057305.75
96 rdf:rest rdf:nil
97 N6f93e29777264bf2bbc808c47ac9d911 rdf:first N22a30b9eb58045ada0406a373364e073
98 rdf:rest Nf7b7517608be4fb9a689e5501db027b2
99 N7a67835b16b54aa8ae5df308b6e40e8a rdf:first sg:person.010415303037.45
100 rdf:rest N3a3bf657fe4747cabfacbfcc920524e1
101 N898ca4c3d1e84f1998dd888a988d2aca schema:name Springer Nature
102 rdf:type schema:Organisation
103 N90c3d783af834283b84f0494437ef04f schema:name doi
104 schema:value 10.1007/978-3-319-51859-6_15
105 rdf:type schema:PropertyValue
106 Na68b13e9d62f454389b264b84d047a50 schema:isbn 978-3-319-51858-9
107 978-3-319-51859-6
108 schema:name Project Management and Engineering Research
109 rdf:type schema:Book
110 Nba3aad93064d43f19e2b16a2b6ba117b schema:familyName Capuz-Rizo
111 schema:givenName Salvador F.
112 rdf:type schema:Person
113 Nd82ad55a8aa7401da1fad1b46eb275e7 schema:name dimensions_id
114 schema:value pub.1084693060
115 rdf:type schema:PropertyValue
116 Nf50d05658fba4d9887bd505c292f8b96 schema:familyName Ayuso Muñoz
117 schema:givenName José Luis
118 rdf:type schema:Person
119 Nf5e44eb3ca614f818f4bf8326e8637dd rdf:first Nf50d05658fba4d9887bd505c292f8b96
120 rdf:rest N6f93e29777264bf2bbc808c47ac9d911
121 Nf7b7517608be4fb9a689e5501db027b2 rdf:first Nba3aad93064d43f19e2b16a2b6ba117b
122 rdf:rest rdf:nil
123 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
124 schema:name Information and Computing Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
127 schema:name Artificial Intelligence and Image Processing
128 rdf:type schema:DefinedTerm
129 sg:person.010415303037.45 schema:affiliation grid-institutes:grid.4807.b
130 schema:familyName Fernández-Robles
131 schema:givenName Laura
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010415303037.45
133 rdf:type schema:Person
134 sg:person.010551001361.75 schema:affiliation grid-institutes:grid.4305.2
135 schema:familyName González-Castro
136 schema:givenName Víctor
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010551001361.75
138 rdf:type schema:Person
139 sg:person.012664070017.21 schema:affiliation grid-institutes:grid.4807.b
140 schema:familyName Fidalgo
141 schema:givenName Eduardo
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012664070017.21
143 rdf:type schema:Person
144 sg:person.015450152607.60 schema:affiliation grid-institutes:grid.4807.b
145 schema:familyName García-Olalla
146 schema:givenName Oscar
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015450152607.60
148 rdf:type schema:Person
149 sg:person.016266057305.75 schema:affiliation grid-institutes:grid.4807.b
150 schema:familyName Alegre
151 schema:givenName Enrique
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016266057305.75
153 rdf:type schema:Person
154 grid-institutes:grid.4305.2 schema:alternateName University of Edinburgh, Edinburgh, UK
155 schema:name University of Edinburgh, Edinburgh, UK
156 rdf:type schema:Organization
157 grid-institutes:grid.4807.b schema:alternateName University of León, Campus de Vegazana S/N, 24071, León, Spain
158 schema:name University of León, Campus de Vegazana S/N, 24071, León, Spain
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...