Effect of Coke Properties on the Bubble Formation at the Anodes During Aluminium Electrolysis in Laboratory Scale View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2017

AUTHORS

Wojciech Gebarowski , Arne Petter Ratvik , Stein Rørvik , Lorentz Petter Lossius , Hogne Linga , Ann Mari Svensson

ABSTRACT

The anodic reaction of aluminium electrolysis cells leads to the formation of CO2 bubbles, which partly screen the anode surface and leads to an increase in the cell voltage. An advantage of these bubbles is that the formation and release contribute to the stirring of the electrolyte, however, the screening of the surface increases the irreversible energy losses. The voltage and current oscillation due to the bubble evolution during electrolysis for different anode materials have been determined in a laboratory cell. The effect of coke sulphur content and grain sizes were investigated. Anodes with finer coke fraction showed lower oscillations than coarser fraction equivalents. Additionally, the influence of current density on the amplitude of the anode potentials was measured. A 64% increase of current density caused an increase of anode potential oscillations from 79 to 170%. More... »

PAGES

1203-1211

References to SciGraph publications

Book

TITLE

Light Metals 2017

ISBN

978-3-319-51540-3
978-3-319-51541-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-51541-0_144

DOI

http://dx.doi.org/10.1007/978-3-319-51541-0_144

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083742590


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Materials Science and Engineering, Norwegian University of Science and Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gebarowski", 
        "givenName": "Wojciech", 
        "id": "sg:person.012164142277.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012164142277.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "SINTEF", 
          "id": "https://www.grid.ac/institutes/grid.4319.f", 
          "name": [
            "SINTEF Materials and Chemistry"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ratvik", 
        "givenName": "Arne Petter", 
        "id": "sg:person.013777251323.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013777251323.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "SINTEF", 
          "id": "https://www.grid.ac/institutes/grid.4319.f", 
          "name": [
            "SINTEF Materials and Chemistry"
          ], 
          "type": "Organization"
        }, 
        "familyName": "R\u00f8rvik", 
        "givenName": "Stein", 
        "id": "sg:person.011640544647.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011640544647.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Primary Metal Technology (PMT), Hydro Aluminium AS"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lossius", 
        "givenName": "Lorentz Petter", 
        "id": "sg:person.013465702331.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013465702331.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Primary Metal Technology (PMT), Hydro Aluminium AS"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Linga", 
        "givenName": "Hogne", 
        "id": "sg:person.07521126271.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07521126271.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Materials Science and Engineering, Norwegian University of Science and Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Svensson", 
        "givenName": "Ann Mari", 
        "id": "sg:person.0674011163.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674011163.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1149/2.0321508jes", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006914834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-008-0019-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008848879", 
          "https://doi.org/10.1007/s11837-008-0019-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118359259.ch151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026066631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0013-4686(97)00013-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037140995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018465705058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040354494", 
          "https://doi.org/10.1023/a:1018465705058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4686(80)80045-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042417764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2129658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051860048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie303464a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055606747"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "The anodic reaction of aluminium electrolysis cells leads to the formation of CO2 bubbles, which partly screen the anode surface and leads to an increase in the cell voltage. An advantage of these bubbles is that the formation and release contribute to the stirring of the electrolyte, however, the screening of the surface increases the irreversible energy losses. The voltage and current oscillation due to the bubble evolution during electrolysis for different anode materials have been determined in a laboratory cell. The effect of coke sulphur content and grain sizes were investigated. Anodes with finer coke fraction showed lower oscillations than coarser fraction equivalents. Additionally, the influence of current density on the amplitude of the anode potentials was measured. A 64% increase of current density caused an increase of anode potential oscillations from 79 to 170%.", 
    "editor": [
      {
        "familyName": "Ratvik", 
        "givenName": "Arne P.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-51541-0_144", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-51540-3", 
        "978-3-319-51541-0"
      ], 
      "name": "Light Metals 2017", 
      "type": "Book"
    }, 
    "name": "Effect of Coke Properties on the Bubble Formation at the Anodes During Aluminium Electrolysis in Laboratory Scale", 
    "pagination": "1203-1211", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-51541-0_144"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1b0fb7c69d8b18861613272823c52e4b715561158810a6d3fb06933c0c6983d5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083742590"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-51541-0_144", 
      "https://app.dimensions.ai/details/publication/pub.1083742590"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T12:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000599.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-51541-0_144"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-51541-0_144'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-51541-0_144'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-51541-0_144'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-51541-0_144'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-51541-0_144 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N2dbd85da7a4d4fd89497438cf8c0b850
4 schema:citation sg:pub.10.1007/s11837-008-0019-x
5 sg:pub.10.1023/a:1018465705058
6 https://doi.org/10.1002/9781118359259.ch151
7 https://doi.org/10.1016/0013-4686(80)80045-4
8 https://doi.org/10.1016/s0013-4686(97)00013-3
9 https://doi.org/10.1021/ie303464a
10 https://doi.org/10.1149/1.2129658
11 https://doi.org/10.1149/2.0321508jes
12 schema:datePublished 2017
13 schema:datePublishedReg 2017-01-01
14 schema:description The anodic reaction of aluminium electrolysis cells leads to the formation of CO2 bubbles, which partly screen the anode surface and leads to an increase in the cell voltage. An advantage of these bubbles is that the formation and release contribute to the stirring of the electrolyte, however, the screening of the surface increases the irreversible energy losses. The voltage and current oscillation due to the bubble evolution during electrolysis for different anode materials have been determined in a laboratory cell. The effect of coke sulphur content and grain sizes were investigated. Anodes with finer coke fraction showed lower oscillations than coarser fraction equivalents. Additionally, the influence of current density on the amplitude of the anode potentials was measured. A 64% increase of current density caused an increase of anode potential oscillations from 79 to 170%.
15 schema:editor Nf5ed7944e1084d46ae7157ac15a3b02c
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf N47fee6d0902b4bfa925b9fdf934eb024
20 schema:name Effect of Coke Properties on the Bubble Formation at the Anodes During Aluminium Electrolysis in Laboratory Scale
21 schema:pagination 1203-1211
22 schema:productId N4c504a8f429d4b5c88fdb5bdab4a6a29
23 N70d1e1d972214872b01b12c0e40bbc2b
24 N9b52dd5501604203ba8e02c54271fd1f
25 schema:publisher N2d5a0fb595bd491789664a05b6f2f51d
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083742590
27 https://doi.org/10.1007/978-3-319-51541-0_144
28 schema:sdDatePublished 2019-04-15T12:13
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N916cff665b2a4f52b664790ba696d50e
31 schema:url http://link.springer.com/10.1007/978-3-319-51541-0_144
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N20ef24dbd67c46fc9f5d582139c50b27 schema:familyName Ratvik
36 schema:givenName Arne P.
37 rdf:type schema:Person
38 N28e2630a6e0b44f0adeb54fcabc3cdd0 rdf:first sg:person.07521126271.09
39 rdf:rest Nbe38d3fb562940cb8d9bf237ab458e65
40 N2d5a0fb595bd491789664a05b6f2f51d schema:location Cham
41 schema:name Springer International Publishing
42 rdf:type schema:Organisation
43 N2dbd85da7a4d4fd89497438cf8c0b850 rdf:first sg:person.012164142277.80
44 rdf:rest Nb01164f0261c4f6da2ba5d37bbe982f4
45 N47fee6d0902b4bfa925b9fdf934eb024 schema:isbn 978-3-319-51540-3
46 978-3-319-51541-0
47 schema:name Light Metals 2017
48 rdf:type schema:Book
49 N4c504a8f429d4b5c88fdb5bdab4a6a29 schema:name dimensions_id
50 schema:value pub.1083742590
51 rdf:type schema:PropertyValue
52 N55ac28ba60b84fef91b34eed34293de9 schema:name Primary Metal Technology (PMT), Hydro Aluminium AS
53 rdf:type schema:Organization
54 N70d1e1d972214872b01b12c0e40bbc2b schema:name readcube_id
55 schema:value 1b0fb7c69d8b18861613272823c52e4b715561158810a6d3fb06933c0c6983d5
56 rdf:type schema:PropertyValue
57 N7820b02f1eea4005bb91e0ab90840706 rdf:first sg:person.011640544647.91
58 rdf:rest Nbb354e64a28344f59bdcd9e58f6733a1
59 N90b775769c1c4b468270dd10ce539476 schema:name Department of Materials Science and Engineering, Norwegian University of Science and Technology
60 rdf:type schema:Organization
61 N916cff665b2a4f52b664790ba696d50e schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N9b52dd5501604203ba8e02c54271fd1f schema:name doi
64 schema:value 10.1007/978-3-319-51541-0_144
65 rdf:type schema:PropertyValue
66 Nb01164f0261c4f6da2ba5d37bbe982f4 rdf:first sg:person.013777251323.76
67 rdf:rest N7820b02f1eea4005bb91e0ab90840706
68 Nbb354e64a28344f59bdcd9e58f6733a1 rdf:first sg:person.013465702331.15
69 rdf:rest N28e2630a6e0b44f0adeb54fcabc3cdd0
70 Nbe38d3fb562940cb8d9bf237ab458e65 rdf:first sg:person.0674011163.15
71 rdf:rest rdf:nil
72 Nd1281df0f780413e973cee522bc7700a schema:name Department of Materials Science and Engineering, Norwegian University of Science and Technology
73 rdf:type schema:Organization
74 Nf343a4af1fa14c609da34274ffcd3de3 schema:name Primary Metal Technology (PMT), Hydro Aluminium AS
75 rdf:type schema:Organization
76 Nf5ed7944e1084d46ae7157ac15a3b02c rdf:first N20ef24dbd67c46fc9f5d582139c50b27
77 rdf:rest rdf:nil
78 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
79 schema:name Engineering
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
82 schema:name Materials Engineering
83 rdf:type schema:DefinedTerm
84 sg:person.011640544647.91 schema:affiliation https://www.grid.ac/institutes/grid.4319.f
85 schema:familyName Rørvik
86 schema:givenName Stein
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011640544647.91
88 rdf:type schema:Person
89 sg:person.012164142277.80 schema:affiliation Nd1281df0f780413e973cee522bc7700a
90 schema:familyName Gebarowski
91 schema:givenName Wojciech
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012164142277.80
93 rdf:type schema:Person
94 sg:person.013465702331.15 schema:affiliation N55ac28ba60b84fef91b34eed34293de9
95 schema:familyName Lossius
96 schema:givenName Lorentz Petter
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013465702331.15
98 rdf:type schema:Person
99 sg:person.013777251323.76 schema:affiliation https://www.grid.ac/institutes/grid.4319.f
100 schema:familyName Ratvik
101 schema:givenName Arne Petter
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013777251323.76
103 rdf:type schema:Person
104 sg:person.0674011163.15 schema:affiliation N90b775769c1c4b468270dd10ce539476
105 schema:familyName Svensson
106 schema:givenName Ann Mari
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674011163.15
108 rdf:type schema:Person
109 sg:person.07521126271.09 schema:affiliation Nf343a4af1fa14c609da34274ffcd3de3
110 schema:familyName Linga
111 schema:givenName Hogne
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07521126271.09
113 rdf:type schema:Person
114 sg:pub.10.1007/s11837-008-0019-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008848879
115 https://doi.org/10.1007/s11837-008-0019-x
116 rdf:type schema:CreativeWork
117 sg:pub.10.1023/a:1018465705058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040354494
118 https://doi.org/10.1023/a:1018465705058
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1002/9781118359259.ch151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026066631
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0013-4686(80)80045-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042417764
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s0013-4686(97)00013-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037140995
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1021/ie303464a schema:sameAs https://app.dimensions.ai/details/publication/pub.1055606747
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1149/1.2129658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051860048
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1149/2.0321508jes schema:sameAs https://app.dimensions.ai/details/publication/pub.1006914834
131 rdf:type schema:CreativeWork
132 https://www.grid.ac/institutes/grid.4319.f schema:alternateName SINTEF
133 schema:name SINTEF Materials and Chemistry
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...