Ontology type: schema:Chapter
2016
AUTHORSHai-Hong Phan , Ngoc-Son Vu , Vu-Lam Nguyen , Mathias Quoy
ABSTRACTIn this paper, we present a novel descriptor for human action recognition, called Motion of Oriented Magnitudes Patterns (MOMP), which considers the relationships between the local gradient distributions of neighboring patches coming from successive frames in video. The proposed descriptor also characterizes the information changing across different orientations, is therefore very discriminative and robust. The major advantages of MOMP are its very fast computation time and simple implementation. Subsequently, our features are combined with an effective coding scheme VLAD (Vector of locally aggregated descriptors) in the feature representation step, and a SVM (Support Vector Machine) classifier in order to better represent and classify the actions. By experimenting on several common benchmarks, we obtain the state-of-the-art results on the KTH dataset as well as the performance comparable to the literature on the UCF Sport dataset. More... »
PAGES168-177
Advances in Visual Computing
ISBN
978-3-319-50831-3
978-3-319-50832-0
http://scigraph.springernature.com/pub.10.1007/978-3-319-50832-0_17
DOIhttp://dx.doi.org/10.1007/978-3-319-50832-0_17
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1045390213
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Cergy-Pontoise University",
"id": "https://www.grid.ac/institutes/grid.7901.f",
"name": [
"ETIS - ENSEA/Universite de Cergy-Pontoise, CNRS UMR 8051 Cergy France"
],
"type": "Organization"
},
"familyName": "Phan",
"givenName": "Hai-Hong",
"id": "sg:person.016207726656.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016207726656.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cergy-Pontoise University",
"id": "https://www.grid.ac/institutes/grid.7901.f",
"name": [
"ETIS - ENSEA/Universite de Cergy-Pontoise, CNRS UMR 8051 Cergy France"
],
"type": "Organization"
},
"familyName": "Vu",
"givenName": "Ngoc-Son",
"id": "sg:person.014676147032.78",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014676147032.78"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cergy-Pontoise University",
"id": "https://www.grid.ac/institutes/grid.7901.f",
"name": [
"ETIS - ENSEA/Universite de Cergy-Pontoise, CNRS UMR 8051 Cergy France"
],
"type": "Organization"
},
"familyName": "Nguyen",
"givenName": "Vu-Lam",
"id": "sg:person.010302236056.19",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010302236056.19"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cergy-Pontoise University",
"id": "https://www.grid.ac/institutes/grid.7901.f",
"name": [
"ETIS - ENSEA/Universite de Cergy-Pontoise, CNRS UMR 8051 Cergy France"
],
"type": "Organization"
},
"familyName": "Quoy",
"givenName": "Mathias",
"id": "sg:person.010556353111.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010556353111.37"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-642-15567-3_11",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005333996",
"https://doi.org/10.1007/978-3-642-15567-3_11"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-15567-3_11",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005333996",
"https://doi.org/10.1007/978-3-642-15567-3_11"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11263-012-0594-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011251901",
"https://doi.org/10.1007/s11263-012-0594-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/1961189.1961199",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013637525"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-10520-3_72",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019782346",
"https://doi.org/10.1007/978-3-642-10520-3_72"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-10520-3_72",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019782346",
"https://doi.org/10.1007/978-3-642-10520-3_72"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-15549-9_23",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020819783",
"https://doi.org/10.1007/978-3-642-15549-9_23"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-15549-9_23",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020819783",
"https://doi.org/10.1007/978-3-642-15549-9_23"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11744047_33",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022098216",
"https://doi.org/10.1007/11744047_33"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11744047_33",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022098216",
"https://doi.org/10.1007/11744047_33"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11263-005-1838-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031382793",
"https://doi.org/10.1007/s11263-005-1838-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11263-005-1838-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031382793",
"https://doi.org/10.1007/s11263-005-1838-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11263-005-1838-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031382793",
"https://doi.org/10.1007/s11263-005-1838-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/b:visi.0000029664.99615.94",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052687286",
"https://doi.org/10.1023/b:visi.0000029664.99615.94"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-33783-3_19",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052793050",
"https://doi.org/10.1007/978-3-642-33783-3_19"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tcyb.2015.2399172",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061579933"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tifs.2012.2224866",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061630072"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tpami.2012.59",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061744395"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/iccv.2013.441",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093254042"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cvpr.2014.332",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093838228"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cvpr.2013.330",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093894837"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cvpr.2013.330",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093894837"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cvpr.2011.5995496",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093974623"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cvpr.2008.4587727",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094359705"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cvpr.2012.6247806",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094572393"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/iccv.2015.510",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094614899"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icpr.2004.1334462",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094617043"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cvpr.2010.5539881",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094630240"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cvpr.2008.4587756",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094776319"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/iccv.2009.5459201",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095371836"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cvpr.2007.383266",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095559903"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cvpr.2010.5540039",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095738093"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5244/c.23.124",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1099325624"
],
"type": "CreativeWork"
}
],
"datePublished": "2016",
"datePublishedReg": "2016-01-01",
"description": "In this paper, we present a novel descriptor for human action recognition, called Motion of Oriented Magnitudes Patterns (MOMP), which considers the relationships between the local gradient distributions of neighboring patches coming from successive frames in video. The proposed descriptor also characterizes the information changing across different orientations, is therefore very discriminative and robust. The major advantages of MOMP are its very fast computation time and simple implementation. Subsequently, our features are combined with an effective coding scheme VLAD (Vector of locally aggregated descriptors) in the feature representation step, and a SVM (Support Vector Machine) classifier in order to better represent and classify the actions. By experimenting on several common benchmarks, we obtain the state-of-the-art results on the KTH dataset as well as the performance comparable to the literature on the UCF Sport dataset.",
"editor": [
{
"familyName": "Bebis",
"givenName": "George",
"type": "Person"
},
{
"familyName": "Boyle",
"givenName": "Richard",
"type": "Person"
},
{
"familyName": "Parvin",
"givenName": "Bahram",
"type": "Person"
},
{
"familyName": "Koracin",
"givenName": "Darko",
"type": "Person"
},
{
"familyName": "Porikli",
"givenName": "Fatih",
"type": "Person"
},
{
"familyName": "Skaff",
"givenName": "Sandra",
"type": "Person"
},
{
"familyName": "Entezari",
"givenName": "Alireza",
"type": "Person"
},
{
"familyName": "Min",
"givenName": "Jianyuan",
"type": "Person"
},
{
"familyName": "Iwai",
"givenName": "Daisuke",
"type": "Person"
},
{
"familyName": "Sadagic",
"givenName": "Amela",
"type": "Person"
},
{
"familyName": "Scheidegger",
"givenName": "Carlos",
"type": "Person"
},
{
"familyName": "Isenberg",
"givenName": "Tobias",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-50832-0_17",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-50831-3",
"978-3-319-50832-0"
],
"name": "Advances in Visual Computing",
"type": "Book"
},
"name": "Motion of Oriented Magnitudes Patterns for Human Action Recognition",
"pagination": "168-177",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-50832-0_17"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"d836913867c16a01616e7f465fe44878843c8f18ee58912c3e45fe4f21841de1"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1045390213"
]
}
],
"publisher": {
"location": "Cham",
"name": "Springer International Publishing",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-50832-0_17",
"https://app.dimensions.ai/details/publication/pub.1045390213"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T17:16",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000271.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-319-50832-0_17"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-50832-0_17'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-50832-0_17'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-50832-0_17'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-50832-0_17'
This table displays all metadata directly associated to this object as RDF triples.
227 TRIPLES
23 PREDICATES
53 URIs
20 LITERALS
8 BLANK NODES