Altered Fingerprint Detection View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

John Ellingsgaard , Christoph Busch

ABSTRACT

The success of Automated Fingerprint Identification Systems (AFIS) has lead to an increased number of incidents where individuals alter their fingerprints in order to evade identification. This is especially seen at border crossings where fingerprints are subject to comparison against a watch list. This chapter discusses methods for automatically detecting altered fingerprints. The methods are based on analyses of two different local characteristics of a fingerprint image. The first analysis identifies irregularities in the pixel-wise orientations which share similar characteristics to singular point. The second analysis compares minutia orientations covering a local, but larger area than the first analysis. A global density map is created in each of the analysis in order to identify the distribution of the analyzed discrepancies. Experimental results suggest that the method yields performance fully comparable to the current state-of-the-art method. Further improvements can be achieved by combining the most efficient analysis of the two methods. The promising results achieved in this study are attractive for further investigations. Especially, studies into the possibility of introducing alteration detection into standard quality measures of fingerprints which would improve AFIS and contribute to the fight against fraud. More... »

PAGES

85-123

Book

TITLE

Handbook of Biometrics for Forensic Science

ISBN

978-3-319-50671-5
978-3-319-50673-9

Author Affiliations

From Grant

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-50673-9_5

DOI

http://dx.doi.org/10.1007/978-3-319-50673-9_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083532934


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Denmark", 
          "id": "https://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Technical University of Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ellingsgaard", 
        "givenName": "John", 
        "id": "sg:person.012572640033.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012572640033.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Norwegian Biometrics Laboratory, Norwegian University of Science and Technology (NTNU)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Busch", 
        "givenName": "Christoph", 
        "id": "sg:person.011143356603.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011143356603.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0031-3203(84)90079-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005823624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(84)90079-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005823624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11552499_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021457106", 
          "https://doi.org/10.1007/11552499_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11552499_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021457106", 
          "https://doi.org/10.1007/11552499_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1028717201", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84882-254-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028717201", 
          "https://doi.org/10.1007/978-1-84882-254-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84882-254-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028717201", 
          "https://doi.org/10.1007/978-1-84882-254-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1155/2010/391761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028833543", 
          "https://doi.org/10.1155/2010/391761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-76788-6_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031507371", 
          "https://doi.org/10.1007/978-3-540-76788-6_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-76788-6_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031507371", 
          "https://doi.org/10.1007/978-3-540-76788-6_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11623-013-0140-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040510526", 
          "https://doi.org/10.1007/s11623-013-0140-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11623-013-0140-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040510526", 
          "https://doi.org/10.1007/s11623-013-0140-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10044-009-0160-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049527353", 
          "https://doi.org/10.1007/s10044-009-0160-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10044-009-0160-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049527353", 
          "https://doi.org/10.1007/s10044-009-0160-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10044-009-0160-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049527353", 
          "https://doi.org/10.1007/s10044-009-0160-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el:20020507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056792186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-bmt.2014.0055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056818709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.841531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061240098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mc.2012.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061388817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2002.1017618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2008.188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2011.161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1155/asp.2005.498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063205675", 
          "https://doi.org/10.1155/asp.2005.498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icb.2012.6199802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094232564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iscv.1995.476986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094476592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iwbf.2014.6914240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094650518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ispa.2015.7306037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094665266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iita.2008.454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094669042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2002.1038062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095423036"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "The success of Automated Fingerprint Identification Systems (AFIS) has lead to an increased number of incidents where individuals alter their fingerprints in order to evade identification. This is especially seen at border crossings where fingerprints are subject to comparison against a watch list. This chapter discusses methods for automatically detecting altered fingerprints. The methods are based on analyses of two different local characteristics of a fingerprint image. The first analysis identifies irregularities in the pixel-wise orientations which share similar characteristics to singular point. The second analysis compares minutia orientations covering a local, but larger area than the first analysis. A global density map is created in each of the analysis in order to identify the distribution of the analyzed discrepancies. Experimental results suggest that the method yields performance fully comparable to the current state-of-the-art method. Further improvements can be achieved by combining the most efficient analysis of the two methods. The promising results achieved in this study are attractive for further investigations. Especially, studies into the possibility of introducing alteration detection into standard quality measures of fingerprints which would improve AFIS and contribute to the fight against fraud.", 
    "editor": [
      {
        "familyName": "Tistarelli", 
        "givenName": "Massimo", 
        "type": "Person"
      }, 
      {
        "familyName": "Champod", 
        "givenName": "Christophe", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-50673-9_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3793186", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-319-50671-5", 
        "978-3-319-50673-9"
      ], 
      "name": "Handbook of Biometrics for Forensic Science", 
      "type": "Book"
    }, 
    "name": "Altered Fingerprint Detection", 
    "pagination": "85-123", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-50673-9_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ed18a758edaa7a203c7dd9c2758e13d17047f73f2212a1d17998074c62ede5f4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083532934"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-50673-9_5", 
      "https://app.dimensions.ai/details/publication/pub.1083532934"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000331.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-50673-9_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-50673-9_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-50673-9_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-50673-9_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-50673-9_5'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      23 PREDICATES      49 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-50673-9_5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N059ce04bdf0c4b7bb6e5c9a434da0312
4 schema:citation sg:pub.10.1007/11552499_3
5 sg:pub.10.1007/978-1-84882-254-2
6 sg:pub.10.1007/978-3-540-76788-6_14
7 sg:pub.10.1007/s10044-009-0160-3
8 sg:pub.10.1007/s11623-013-0140-z
9 sg:pub.10.1155/2010/391761
10 sg:pub.10.1155/asp.2005.498
11 https://app.dimensions.ai/details/publication/pub.1028717201
12 https://doi.org/10.1016/0031-3203(84)90079-7
13 https://doi.org/10.1049/el:20020507
14 https://doi.org/10.1049/iet-bmt.2014.0055
15 https://doi.org/10.1109/83.841531
16 https://doi.org/10.1109/icb.2012.6199802
17 https://doi.org/10.1109/icip.2002.1038062
18 https://doi.org/10.1109/iita.2008.454
19 https://doi.org/10.1109/iscv.1995.476986
20 https://doi.org/10.1109/ispa.2015.7306037
21 https://doi.org/10.1109/iwbf.2014.6914240
22 https://doi.org/10.1109/mc.2012.6
23 https://doi.org/10.1109/tpami.2002.1017618
24 https://doi.org/10.1109/tpami.2008.188
25 https://doi.org/10.1109/tpami.2011.161
26 schema:datePublished 2017
27 schema:datePublishedReg 2017-01-01
28 schema:description The success of Automated Fingerprint Identification Systems (AFIS) has lead to an increased number of incidents where individuals alter their fingerprints in order to evade identification. This is especially seen at border crossings where fingerprints are subject to comparison against a watch list. This chapter discusses methods for automatically detecting altered fingerprints. The methods are based on analyses of two different local characteristics of a fingerprint image. The first analysis identifies irregularities in the pixel-wise orientations which share similar characteristics to singular point. The second analysis compares minutia orientations covering a local, but larger area than the first analysis. A global density map is created in each of the analysis in order to identify the distribution of the analyzed discrepancies. Experimental results suggest that the method yields performance fully comparable to the current state-of-the-art method. Further improvements can be achieved by combining the most efficient analysis of the two methods. The promising results achieved in this study are attractive for further investigations. Especially, studies into the possibility of introducing alteration detection into standard quality measures of fingerprints which would improve AFIS and contribute to the fight against fraud.
29 schema:editor Ne531e007b7a14ba799da9f3c51b8505c
30 schema:genre chapter
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf Nf1603d4948654efcb82f5f4c8b602881
34 schema:name Altered Fingerprint Detection
35 schema:pagination 85-123
36 schema:productId N6228123c42794c43b2148dc5667696b5
37 N966600369b10429fb18222b452a4425d
38 Nbea8fecf5d654ede833d0a68db13cbc9
39 schema:publisher Nb0f75e685ec04ac19b857283d5f94b65
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083532934
41 https://doi.org/10.1007/978-3-319-50673-9_5
42 schema:sdDatePublished 2019-04-15T22:08
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N75c1b255103b406bb49dcf8426095a88
45 schema:url http://link.springer.com/10.1007/978-3-319-50673-9_5
46 sgo:license sg:explorer/license/
47 sgo:sdDataset chapters
48 rdf:type schema:Chapter
49 N00aff52eee364148aab9ea526a0f2620 rdf:first N6704b5c1884f49fa80057a3534f83f63
50 rdf:rest rdf:nil
51 N059ce04bdf0c4b7bb6e5c9a434da0312 rdf:first sg:person.012572640033.76
52 rdf:rest N4a964f1589d145afb9388859103c55d6
53 N4a964f1589d145afb9388859103c55d6 rdf:first sg:person.011143356603.69
54 rdf:rest rdf:nil
55 N6228123c42794c43b2148dc5667696b5 schema:name readcube_id
56 schema:value ed18a758edaa7a203c7dd9c2758e13d17047f73f2212a1d17998074c62ede5f4
57 rdf:type schema:PropertyValue
58 N6704b5c1884f49fa80057a3534f83f63 schema:familyName Champod
59 schema:givenName Christophe
60 rdf:type schema:Person
61 N75c1b255103b406bb49dcf8426095a88 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N966600369b10429fb18222b452a4425d schema:name dimensions_id
64 schema:value pub.1083532934
65 rdf:type schema:PropertyValue
66 Nb0f75e685ec04ac19b857283d5f94b65 schema:location Cham
67 schema:name Springer International Publishing
68 rdf:type schema:Organisation
69 Nbea8fecf5d654ede833d0a68db13cbc9 schema:name doi
70 schema:value 10.1007/978-3-319-50673-9_5
71 rdf:type schema:PropertyValue
72 Ne033c0bf7ea04304be595fc931d850a5 schema:name Norwegian Biometrics Laboratory, Norwegian University of Science and Technology (NTNU)
73 rdf:type schema:Organization
74 Ne531e007b7a14ba799da9f3c51b8505c rdf:first Nf12a7caa66e948d68d2db40da4d06606
75 rdf:rest N00aff52eee364148aab9ea526a0f2620
76 Nf12a7caa66e948d68d2db40da4d06606 schema:familyName Tistarelli
77 schema:givenName Massimo
78 rdf:type schema:Person
79 Nf1603d4948654efcb82f5f4c8b602881 schema:isbn 978-3-319-50671-5
80 978-3-319-50673-9
81 schema:name Handbook of Biometrics for Forensic Science
82 rdf:type schema:Book
83 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
84 schema:name Information and Computing Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
87 schema:name Artificial Intelligence and Image Processing
88 rdf:type schema:DefinedTerm
89 sg:grant.3793186 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-50673-9_5
90 rdf:type schema:MonetaryGrant
91 sg:person.011143356603.69 schema:affiliation Ne033c0bf7ea04304be595fc931d850a5
92 schema:familyName Busch
93 schema:givenName Christoph
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011143356603.69
95 rdf:type schema:Person
96 sg:person.012572640033.76 schema:affiliation https://www.grid.ac/institutes/grid.5170.3
97 schema:familyName Ellingsgaard
98 schema:givenName John
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012572640033.76
100 rdf:type schema:Person
101 sg:pub.10.1007/11552499_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021457106
102 https://doi.org/10.1007/11552499_3
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/978-1-84882-254-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028717201
105 https://doi.org/10.1007/978-1-84882-254-2
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/978-3-540-76788-6_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031507371
108 https://doi.org/10.1007/978-3-540-76788-6_14
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s10044-009-0160-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049527353
111 https://doi.org/10.1007/s10044-009-0160-3
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11623-013-0140-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1040510526
114 https://doi.org/10.1007/s11623-013-0140-z
115 rdf:type schema:CreativeWork
116 sg:pub.10.1155/2010/391761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028833543
117 https://doi.org/10.1155/2010/391761
118 rdf:type schema:CreativeWork
119 sg:pub.10.1155/asp.2005.498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063205675
120 https://doi.org/10.1155/asp.2005.498
121 rdf:type schema:CreativeWork
122 https://app.dimensions.ai/details/publication/pub.1028717201 schema:CreativeWork
123 https://doi.org/10.1016/0031-3203(84)90079-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005823624
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1049/el:20020507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056792186
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1049/iet-bmt.2014.0055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056818709
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/83.841531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061240098
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/icb.2012.6199802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094232564
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/icip.2002.1038062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095423036
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/iita.2008.454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094669042
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/iscv.1995.476986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094476592
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/ispa.2015.7306037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094665266
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/iwbf.2014.6914240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094650518
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/mc.2012.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061388817
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/tpami.2002.1017618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742391
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/tpami.2008.188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743540
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/tpami.2011.161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744055
150 rdf:type schema:CreativeWork
151 https://www.grid.ac/institutes/grid.5170.3 schema:alternateName Technical University of Denmark
152 schema:name Technical University of Denmark
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...