Challenges for Fingerprint Recognition—Spoofing, Skin Diseases, and Environmental Effects View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

Martin Drahanský , Ondřej Kanich , Eva Březinová

ABSTRACT

This chapter tries to find answers to the questions whether the fingerprint recognition is really so reliable and secure. The most biometric systems based on fingerprint recognition have very low error rates, but are these error rates really telling us everything about the quality of such a biometric system? What happens when we use spoofs to deceive the biometric system? What happens when the genuine user has any kind of skin disease on his fingertips? And could we acquire a fingerprint with acceptable quality if there are some distortions on a finger or there are some environmental effects influencing the scanning technology? Reading this chapter brings you an introduction of preparation of finger fakes (spoofs), spoof detection methods, summarization of skin diseases and their influence on papillary lines, and finally the environmental effects are discussed at the end. More... »

PAGES

63-83

References to SciGraph publications

Book

TITLE

Handbook of Biometrics for Forensic Science

ISBN

978-3-319-50671-5
978-3-319-50673-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-50673-9_4

DOI

http://dx.doi.org/10.1007/978-3-319-50673-9_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083527325


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Brno University of Technology, Faculty of Information Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drahansk\u00fd", 
        "givenName": "Martin", 
        "id": "sg:person.011235710535.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011235710535.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Brno University of Technology, Faculty of Information Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kanich", 
        "givenName": "Ond\u0159ej", 
        "id": "sg:person.015674323047.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015674323047.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "1st Department of Dermatovenereology, St. Anne\u2019s University Hospital, Faculty of Medicine & Masaryk University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u0159ezinov\u00e1", 
        "givenName": "Eva", 
        "id": "sg:person.0746654661.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746654661.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1117/12.462719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001761250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-71041-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003713634", 
          "https://doi.org/10.1007/978-0-387-71041-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-71041-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003713634", 
          "https://doi.org/10.1007/978-0-387-71041-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1028717201", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84882-254-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028717201", 
          "https://doi.org/10.1007/978-1-84882-254-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84882-254-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028717201", 
          "https://doi.org/10.1007/978-1-84882-254-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0846.1999.tb00128.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035006160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iaw.2006.1652075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093485346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/btas.2012.6374554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094298757"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "This chapter tries to find answers to the questions whether the fingerprint recognition is really so reliable and secure. The most biometric systems based on fingerprint recognition have very low error rates, but are these error rates really telling us everything about the quality of such a biometric system? What happens when we use spoofs to deceive the biometric system? What happens when the genuine user has any kind of skin disease on his fingertips? And could we acquire a fingerprint with acceptable quality if there are some distortions on a finger or there are some environmental effects influencing the scanning technology? Reading this chapter brings you an introduction of preparation of finger fakes (spoofs), spoof detection methods, summarization of skin diseases and their influence on papillary lines, and finally the environmental effects are discussed at the end.", 
    "editor": [
      {
        "familyName": "Tistarelli", 
        "givenName": "Massimo", 
        "type": "Person"
      }, 
      {
        "familyName": "Champod", 
        "givenName": "Christophe", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-50673-9_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6899050", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7071313", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-319-50671-5", 
        "978-3-319-50673-9"
      ], 
      "name": "Handbook of Biometrics for Forensic Science", 
      "type": "Book"
    }, 
    "name": "Challenges for Fingerprint Recognition\u2014Spoofing, Skin Diseases, and Environmental Effects", 
    "pagination": "63-83", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-50673-9_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2c82a384f1ef699c6772c6498fa664681c0526f690dbf343c7001a71ebd05e5b"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083527325"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-50673-9_4", 
      "https://app.dimensions.ai/details/publication/pub.1083527325"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000331.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-50673-9_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-50673-9_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-50673-9_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-50673-9_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-50673-9_4'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-50673-9_4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N9fb6c18605364bf2a1c011efda4896e4
4 schema:citation sg:pub.10.1007/978-0-387-71041-9
5 sg:pub.10.1007/978-1-84882-254-2
6 https://app.dimensions.ai/details/publication/pub.1028717201
7 https://doi.org/10.1109/btas.2012.6374554
8 https://doi.org/10.1109/iaw.2006.1652075
9 https://doi.org/10.1111/j.1600-0846.1999.tb00128.x
10 https://doi.org/10.1117/12.462719
11 schema:datePublished 2017
12 schema:datePublishedReg 2017-01-01
13 schema:description This chapter tries to find answers to the questions whether the fingerprint recognition is really so reliable and secure. The most biometric systems based on fingerprint recognition have very low error rates, but are these error rates really telling us everything about the quality of such a biometric system? What happens when we use spoofs to deceive the biometric system? What happens when the genuine user has any kind of skin disease on his fingertips? And could we acquire a fingerprint with acceptable quality if there are some distortions on a finger or there are some environmental effects influencing the scanning technology? Reading this chapter brings you an introduction of preparation of finger fakes (spoofs), spoof detection methods, summarization of skin diseases and their influence on papillary lines, and finally the environmental effects are discussed at the end.
14 schema:editor N81f0041bacff4594981eed4df7825d0e
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf Naa72f99a4f254c339c10b403ec1b3760
19 schema:name Challenges for Fingerprint Recognition—Spoofing, Skin Diseases, and Environmental Effects
20 schema:pagination 63-83
21 schema:productId Na21c08cfc7204096a92fdcdea6c0ec1c
22 Nf772897b12f645628f88e977784f3dac
23 Nfa07a0672bab4c078425705aee070480
24 schema:publisher Ne17135690d164d898cc06eee1c6b6d7e
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083527325
26 https://doi.org/10.1007/978-3-319-50673-9_4
27 schema:sdDatePublished 2019-04-15T20:15
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N34dd634bf6ad475aa840290c5492637b
30 schema:url http://link.springer.com/10.1007/978-3-319-50673-9_4
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N02401cfebffb4ee38a14bc6fa40ec03a schema:familyName Champod
35 schema:givenName Christophe
36 rdf:type schema:Person
37 N23cedb3c9ac34f6a909fb535f398fe84 rdf:first sg:person.0746654661.95
38 rdf:rest rdf:nil
39 N2cce7a1e6b5142108c64fcea2fffc87e schema:familyName Tistarelli
40 schema:givenName Massimo
41 rdf:type schema:Person
42 N33d9824f33334fc0b820855e95cf2db5 rdf:first N02401cfebffb4ee38a14bc6fa40ec03a
43 rdf:rest rdf:nil
44 N34dd634bf6ad475aa840290c5492637b schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N406df0563279488e89f7274a86bf87f2 rdf:first sg:person.015674323047.31
47 rdf:rest N23cedb3c9ac34f6a909fb535f398fe84
48 N530130494ded40738b611fa7f2971e5c schema:name Brno University of Technology, Faculty of Information Technology
49 rdf:type schema:Organization
50 N81f0041bacff4594981eed4df7825d0e rdf:first N2cce7a1e6b5142108c64fcea2fffc87e
51 rdf:rest N33d9824f33334fc0b820855e95cf2db5
52 N82645cdedf744c9ba66ffbbfcadc4553 schema:name 1st Department of Dermatovenereology, St. Anne’s University Hospital, Faculty of Medicine & Masaryk University
53 rdf:type schema:Organization
54 N9fb6c18605364bf2a1c011efda4896e4 rdf:first sg:person.011235710535.29
55 rdf:rest N406df0563279488e89f7274a86bf87f2
56 Na21c08cfc7204096a92fdcdea6c0ec1c schema:name dimensions_id
57 schema:value pub.1083527325
58 rdf:type schema:PropertyValue
59 Naa72f99a4f254c339c10b403ec1b3760 schema:isbn 978-3-319-50671-5
60 978-3-319-50673-9
61 schema:name Handbook of Biometrics for Forensic Science
62 rdf:type schema:Book
63 Nc1b75963c0ff434db8532d5a9fe0e60b schema:name Brno University of Technology, Faculty of Information Technology
64 rdf:type schema:Organization
65 Ne17135690d164d898cc06eee1c6b6d7e schema:location Cham
66 schema:name Springer International Publishing
67 rdf:type schema:Organisation
68 Nf772897b12f645628f88e977784f3dac schema:name doi
69 schema:value 10.1007/978-3-319-50673-9_4
70 rdf:type schema:PropertyValue
71 Nfa07a0672bab4c078425705aee070480 schema:name readcube_id
72 schema:value 2c82a384f1ef699c6772c6498fa664681c0526f690dbf343c7001a71ebd05e5b
73 rdf:type schema:PropertyValue
74 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
75 schema:name Information and Computing Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
78 schema:name Artificial Intelligence and Image Processing
79 rdf:type schema:DefinedTerm
80 sg:grant.6899050 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-50673-9_4
81 rdf:type schema:MonetaryGrant
82 sg:grant.7071313 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-50673-9_4
83 rdf:type schema:MonetaryGrant
84 sg:person.011235710535.29 schema:affiliation N530130494ded40738b611fa7f2971e5c
85 schema:familyName Drahanský
86 schema:givenName Martin
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011235710535.29
88 rdf:type schema:Person
89 sg:person.015674323047.31 schema:affiliation Nc1b75963c0ff434db8532d5a9fe0e60b
90 schema:familyName Kanich
91 schema:givenName Ondřej
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015674323047.31
93 rdf:type schema:Person
94 sg:person.0746654661.95 schema:affiliation N82645cdedf744c9ba66ffbbfcadc4553
95 schema:familyName Březinová
96 schema:givenName Eva
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746654661.95
98 rdf:type schema:Person
99 sg:pub.10.1007/978-0-387-71041-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003713634
100 https://doi.org/10.1007/978-0-387-71041-9
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/978-1-84882-254-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028717201
103 https://doi.org/10.1007/978-1-84882-254-2
104 rdf:type schema:CreativeWork
105 https://app.dimensions.ai/details/publication/pub.1028717201 schema:CreativeWork
106 https://doi.org/10.1109/btas.2012.6374554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094298757
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/iaw.2006.1652075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093485346
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1111/j.1600-0846.1999.tb00128.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035006160
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1117/12.462719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001761250
113 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...