Outer Membrane Vesicles of Bacteria: Structure, Biogenesis, and Function View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019-01-09

AUTHORS

Armaity Nasarabadi , James E. Berleman , Manfred Auer

ABSTRACT

Extracellular membrane vesicles (EMVs), a characteristic present across each domain of life, are subcellular shuttles of biologically active cargo that have a variety of functions ranging from cell-to-cell communication to predatory behavior. Mechanism(s) governing EMV biogenesis remain elusive; however, several initiators have been determined such as stress stimuli, sensing a potential prey or intruder, and signaling molecules. Regardless of function, increased membrane curvature and bulging is a key characteristic that leads to budding and release. This chapter highlights the differences between biogenesis processes of the bacteria, archaea and eukarya. We then focus on the outer membrane vesicles (OMVs) specific to Gram-negative bacteria, including several mechanism(s) that potentially explain how the loss of crucial OM-peptidoglycan (PGN) and OM-PGN-inner membrane (IM) interactions can destabilize the OM to result in OMV biogenesis. Despite gaps present in the current understanding of these novel organelles, OMVs are one mechanism that allow microbial cells to function as multicellular organisms, as pathogens, and act as key predators in their environment. We discuss the importance in better understanding OMV biogenesis for greater insight into how this form of membrane architecture can be utilized for vaccines and targeted/specific treatments for infections. More... »

PAGES

593-607

Book

TITLE

Biogenesis of Fatty Acids, Lipids and Membranes

ISBN

978-3-319-50429-2
978-3-319-50430-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-50430-8_44

DOI

http://dx.doi.org/10.1007/978-3-319-50430-8_44

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111272660


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nasarabadi", 
        "givenName": "Armaity", 
        "id": "sg:person.016003037506.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016003037506.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saint Mary\u2019s College of California, Moraga, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.421780.8", 
          "name": [
            "Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
            "Saint Mary\u2019s College of California, Moraga, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berleman", 
        "givenName": "James E.", 
        "id": "sg:person.01202647523.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202647523.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Lawrence Berkeley National Laboratory, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Auer", 
        "givenName": "Manfred", 
        "id": "sg:person.0652233644.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652233644.88"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-01-09", 
    "datePublishedReg": "2019-01-09", 
    "description": "Extracellular membrane vesicles (EMVs), a characteristic present across each domain of life, are subcellular shuttles of biologically active cargo that have a variety of functions ranging from cell-to-cell communication to predatory behavior. Mechanism(s) governing EMV biogenesis remain elusive; however, several initiators have been determined such as stress stimuli, sensing a potential prey or intruder, and signaling molecules. Regardless of function, increased membrane curvature and bulging is a key characteristic that leads to budding and release. This chapter highlights the differences between biogenesis processes of the bacteria, archaea and eukarya. We then focus on the outer membrane vesicles (OMVs) specific to Gram-negative bacteria, including several mechanism(s) that potentially explain how the loss of crucial OM-peptidoglycan (PGN) and OM-PGN-inner membrane (IM) interactions can destabilize the OM to result in OMV biogenesis. Despite gaps present in the current understanding of these novel organelles, OMVs are one mechanism that allow microbial cells to function as multicellular organisms, as pathogens, and act as key predators in their environment. We discuss the importance in better understanding OMV biogenesis for greater insight into how this form of membrane architecture can be utilized for vaccines and targeted/specific treatments for infections.", 
    "editor": [
      {
        "familyName": "Geiger", 
        "givenName": "Otto", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-50430-8_44", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-50429-2", 
        "978-3-319-50430-8"
      ], 
      "name": "Biogenesis of Fatty Acids, Lipids and Membranes", 
      "type": "Book"
    }, 
    "keywords": [
      "outer membrane vesicles", 
      "extracellular membrane vesicles", 
      "OMV biogenesis", 
      "membrane vesicles", 
      "domains of life", 
      "Gram-negative bacteria", 
      "multicellular organisms", 
      "novel organelle", 
      "biogenesis process", 
      "EMV biogenesis", 
      "potential prey", 
      "key predators", 
      "cell communication", 
      "membrane curvature", 
      "microbial cells", 
      "variety of functions", 
      "biogenesis", 
      "membrane architecture", 
      "stress stimuli", 
      "membrane interactions", 
      "predatory behavior", 
      "bacteria", 
      "vesicles", 
      "active cargo", 
      "current understanding", 
      "Eukarya", 
      "archaea", 
      "cells", 
      "predators", 
      "prey", 
      "organelles", 
      "greater insight", 
      "budding", 
      "organisms", 
      "characteristic present", 
      "pathogens", 
      "cargo", 
      "function", 
      "domain", 
      "insights", 
      "molecules", 
      "shuttle", 
      "mechanism", 
      "interaction", 
      "understanding", 
      "variety", 
      "loss", 
      "importance", 
      "environment", 
      "infection", 
      "structure", 
      "form", 
      "stimuli", 
      "key characteristics", 
      "process", 
      "present", 
      "chapter", 
      "differences", 
      "intruders", 
      "architecture", 
      "OM", 
      "treatment", 
      "vaccine", 
      "initiator", 
      "characteristics", 
      "specific treatment", 
      "gap", 
      "life", 
      "behavior", 
      "communication", 
      "curvature", 
      "bulging", 
      "subcellular shuttles", 
      "crucial OM-peptidoglycan", 
      "OM-peptidoglycan", 
      "OM-PGN", 
      "inner membrane (IM) interactions", 
      "better understanding OMV biogenesis", 
      "understanding OMV biogenesis"
    ], 
    "name": "Outer Membrane Vesicles of Bacteria: Structure, Biogenesis, and Function", 
    "pagination": "593-607", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111272660"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-50430-8_44"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-50430-8_44", 
      "https://app.dimensions.ai/details/publication/pub.1111272660"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T19:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_63.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-50430-8_44"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-50430-8_44'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-50430-8_44'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-50430-8_44'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-50430-8_44'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      23 PREDICATES      104 URIs      96 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-50430-8_44 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 anzsrc-for:0605
4 schema:author N539ed1e5c5fc4b89881f22bac87d2388
5 schema:datePublished 2019-01-09
6 schema:datePublishedReg 2019-01-09
7 schema:description Extracellular membrane vesicles (EMVs), a characteristic present across each domain of life, are subcellular shuttles of biologically active cargo that have a variety of functions ranging from cell-to-cell communication to predatory behavior. Mechanism(s) governing EMV biogenesis remain elusive; however, several initiators have been determined such as stress stimuli, sensing a potential prey or intruder, and signaling molecules. Regardless of function, increased membrane curvature and bulging is a key characteristic that leads to budding and release. This chapter highlights the differences between biogenesis processes of the bacteria, archaea and eukarya. We then focus on the outer membrane vesicles (OMVs) specific to Gram-negative bacteria, including several mechanism(s) that potentially explain how the loss of crucial OM-peptidoglycan (PGN) and OM-PGN-inner membrane (IM) interactions can destabilize the OM to result in OMV biogenesis. Despite gaps present in the current understanding of these novel organelles, OMVs are one mechanism that allow microbial cells to function as multicellular organisms, as pathogens, and act as key predators in their environment. We discuss the importance in better understanding OMV biogenesis for greater insight into how this form of membrane architecture can be utilized for vaccines and targeted/specific treatments for infections.
8 schema:editor Nbf4e541b52df4ddb9b4e713159065a4b
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N44ada616d2c7474cbf6b8643d7460571
13 schema:keywords EMV biogenesis
14 Eukarya
15 Gram-negative bacteria
16 OM
17 OM-PGN
18 OM-peptidoglycan
19 OMV biogenesis
20 active cargo
21 archaea
22 architecture
23 bacteria
24 behavior
25 better understanding OMV biogenesis
26 biogenesis
27 biogenesis process
28 budding
29 bulging
30 cargo
31 cell communication
32 cells
33 chapter
34 characteristic present
35 characteristics
36 communication
37 crucial OM-peptidoglycan
38 current understanding
39 curvature
40 differences
41 domain
42 domains of life
43 environment
44 extracellular membrane vesicles
45 form
46 function
47 gap
48 greater insight
49 importance
50 infection
51 initiator
52 inner membrane (IM) interactions
53 insights
54 interaction
55 intruders
56 key characteristics
57 key predators
58 life
59 loss
60 mechanism
61 membrane architecture
62 membrane curvature
63 membrane interactions
64 membrane vesicles
65 microbial cells
66 molecules
67 multicellular organisms
68 novel organelle
69 organelles
70 organisms
71 outer membrane vesicles
72 pathogens
73 potential prey
74 predators
75 predatory behavior
76 present
77 prey
78 process
79 shuttle
80 specific treatment
81 stimuli
82 stress stimuli
83 structure
84 subcellular shuttles
85 treatment
86 understanding
87 understanding OMV biogenesis
88 vaccine
89 variety
90 variety of functions
91 vesicles
92 schema:name Outer Membrane Vesicles of Bacteria: Structure, Biogenesis, and Function
93 schema:pagination 593-607
94 schema:productId N0049e6656daa49deafdcf9c03bce4de9
95 N4392d2c3fcf2480e919c6a5357d49e80
96 schema:publisher N430647c2a4af4730aca8f6f25caf9072
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111272660
98 https://doi.org/10.1007/978-3-319-50430-8_44
99 schema:sdDatePublished 2021-11-01T19:02
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher N7f658017dfad42ce81ac225b72b811ec
102 schema:url https://doi.org/10.1007/978-3-319-50430-8_44
103 sgo:license sg:explorer/license/
104 sgo:sdDataset chapters
105 rdf:type schema:Chapter
106 N0049e6656daa49deafdcf9c03bce4de9 schema:name dimensions_id
107 schema:value pub.1111272660
108 rdf:type schema:PropertyValue
109 N430647c2a4af4730aca8f6f25caf9072 schema:name Springer Nature
110 rdf:type schema:Organisation
111 N4392d2c3fcf2480e919c6a5357d49e80 schema:name doi
112 schema:value 10.1007/978-3-319-50430-8_44
113 rdf:type schema:PropertyValue
114 N44ada616d2c7474cbf6b8643d7460571 schema:isbn 978-3-319-50429-2
115 978-3-319-50430-8
116 schema:name Biogenesis of Fatty Acids, Lipids and Membranes
117 rdf:type schema:Book
118 N539ed1e5c5fc4b89881f22bac87d2388 rdf:first sg:person.016003037506.17
119 rdf:rest Ne7462ea332c0434caffd888f37b0dd27
120 N7f658017dfad42ce81ac225b72b811ec schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 N93a849af6c7c44bb888b050ee5f445f4 rdf:first sg:person.0652233644.88
123 rdf:rest rdf:nil
124 Nbf4e541b52df4ddb9b4e713159065a4b rdf:first Ne4b9b520550e4f6c914eb3eec41767df
125 rdf:rest rdf:nil
126 Ne4b9b520550e4f6c914eb3eec41767df schema:familyName Geiger
127 schema:givenName Otto
128 rdf:type schema:Person
129 Ne7462ea332c0434caffd888f37b0dd27 rdf:first sg:person.01202647523.02
130 rdf:rest N93a849af6c7c44bb888b050ee5f445f4
131 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
132 schema:name Biological Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
135 schema:name Biochemistry and Cell Biology
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
138 schema:name Microbiology
139 rdf:type schema:DefinedTerm
140 sg:person.01202647523.02 schema:affiliation grid-institutes:grid.421780.8
141 schema:familyName Berleman
142 schema:givenName James E.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202647523.02
144 rdf:type schema:Person
145 sg:person.016003037506.17 schema:affiliation grid-institutes:grid.184769.5
146 schema:familyName Nasarabadi
147 schema:givenName Armaity
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016003037506.17
149 rdf:type schema:Person
150 sg:person.0652233644.88 schema:affiliation grid-institutes:grid.184769.5
151 schema:familyName Auer
152 schema:givenName Manfred
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652233644.88
154 rdf:type schema:Person
155 grid-institutes:grid.184769.5 schema:alternateName Lawrence Berkeley National Laboratory, Berkeley, CA, USA
156 schema:name Lawrence Berkeley National Laboratory, Berkeley, CA, USA
157 rdf:type schema:Organization
158 grid-institutes:grid.421780.8 schema:alternateName Saint Mary’s College of California, Moraga, CA, USA
159 schema:name Lawrence Berkeley National Laboratory, Berkeley, CA, USA
160 Saint Mary’s College of California, Moraga, CA, USA
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...