Relativistic Many-Body Perturbation Theory Calculations of the Hyperfine Structure and Oscillator Strength Parameters for Some Heavy Element Atoms and Ions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-05-19

AUTHORS

O. Yu. Khetselius , P. A. Zaichko , A. V. Smirnov , V. V. Buyadzhi , V. B. Ternovsky , T. A. Florko , V. F. Mansarliysky

ABSTRACT

The formalism of the relativistic many-body perturbation theory with an optimized zeroth approximation is applied to computing the energies and hyperfine structure constants for some heavy Li-like multicharged ions and alkali (caesium) atoms. The exchange-correlation, nuclear and radiative corrections are correctly and effectively taken into account. The modified Uehling-Serber approximation is used to take into account for the Lamb shift polarization part. In order to take into account the contribution of the Lamb shift self-energy part we have used the generalized non-perturbative procedure, developed by Ivanov-Ivanova et al. The energies and oscillator strengths of radiation transition in spectra of some Li-like ions (Z = 20 – 70) and Cs are computed on the basis of the combined relativistic energy approach (S-matrix formalism) and relativistic many-body perturbation theory. The data on oscillator strengths of radiative transitions from the ground state to the low-excited and Rydberg states 2s1/2 – np1/2,3/2, np1/2,3/2-nd3/2,5/2 (n = 2 – 12) in the Li-like ions are presented. Some results are obtained at first. It is performed an analysis of the computed oscillator strength values with available theoretical and experimental results. More... »

PAGES

271-281

Book

TITLE

Quantum Systems in Physics, Chemistry, and Biology

ISBN

978-3-319-50254-0
978-3-319-50255-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-50255-7_16

DOI

http://dx.doi.org/10.1007/978-3-319-50255-7_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1086115793


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Odessa State Environmental University (OSENU), L\u2019vovskaya str. 15, 65016, Odessa-9, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.436916.f", 
          "name": [
            "Odessa State Environmental University (OSENU), L\u2019vovskaya str. 15, 65016, Odessa-9, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khetselius", 
        "givenName": "O. Yu.", 
        "id": "sg:person.014624751311.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014624751311.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Odessa State Environmental University (OSENU), L\u2019vovskaya str. 15, 65016, Odessa-9, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.436916.f", 
          "name": [
            "Odessa State Environmental University (OSENU), L\u2019vovskaya str. 15, 65016, Odessa-9, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaichko", 
        "givenName": "P. A.", 
        "id": "sg:person.012121010537.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012121010537.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Odessa State Environmental University (OSENU), L\u2019vovskaya str. 15, 65016, Odessa-9, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.436916.f", 
          "name": [
            "Odessa State Environmental University (OSENU), L\u2019vovskaya str. 15, 65016, Odessa-9, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smirnov", 
        "givenName": "A. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Odessa State Environmental University (OSENU), L\u2019vovskaya str. 15, 65016, Odessa-9, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.436916.f", 
          "name": [
            "Odessa State Environmental University (OSENU), L\u2019vovskaya str. 15, 65016, Odessa-9, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buyadzhi", 
        "givenName": "V. V.", 
        "id": "sg:person.013001451411.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013001451411.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Odessa State Environmental University (OSENU), L\u2019vovskaya str. 15, 65016, Odessa-9, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.436916.f", 
          "name": [
            "Odessa State Environmental University (OSENU), L\u2019vovskaya str. 15, 65016, Odessa-9, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ternovsky", 
        "givenName": "V. B.", 
        "id": "sg:person.014374412411.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014374412411.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Odessa State Environmental University (OSENU), L\u2019vovskaya str. 15, 65016, Odessa-9, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.436916.f", 
          "name": [
            "Odessa State Environmental University (OSENU), L\u2019vovskaya str. 15, 65016, Odessa-9, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Florko", 
        "givenName": "T. A.", 
        "id": "sg:person.07747731501.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07747731501.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Odessa State Environmental University (OSENU), L\u2019vovskaya str. 15, 65016, Odessa-9, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.436916.f", 
          "name": [
            "Odessa State Environmental University (OSENU), L\u2019vovskaya str. 15, 65016, Odessa-9, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mansarliysky", 
        "givenName": "V. F.", 
        "id": "sg:person.011072166311.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011072166311.87"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-05-19", 
    "datePublishedReg": "2017-05-19", 
    "description": "The formalism of the relativistic many-body perturbation theory with an optimized zeroth approximation is applied to computing the energies and hyperfine structure constants for some heavy Li-like multicharged ions and alkali (caesium) atoms. The exchange-correlation, nuclear and radiative corrections are correctly and effectively taken into account. The modified Uehling-Serber approximation is used to take into account for the Lamb shift polarization part. In order to take into account the contribution of the Lamb shift self-energy part we have used the generalized non-perturbative procedure, developed by Ivanov-Ivanova et al. The energies and oscillator strengths of radiation transition in spectra of some Li-like ions (Z\u00a0=\u00a020 \u2013 70) and Cs are computed on the basis of the combined relativistic energy approach (S-matrix formalism) and relativistic many-body perturbation theory. The data on oscillator strengths of radiative transitions from the ground state to the low-excited and Rydberg states 2s1/2 \u2013 np1/2,3/2, np1/2,3/2-nd3/2,5/2 (n\u00a0=\u00a02 \u2013 12) in the Li-like ions are presented. Some results are obtained at first. It is performed an analysis of the computed oscillator strength values with available theoretical and experimental results.", 
    "editor": [
      {
        "familyName": "Tadjer", 
        "givenName": "Alia", 
        "type": "Person"
      }, 
      {
        "familyName": "Pavlov", 
        "givenName": "Rossen", 
        "type": "Person"
      }, 
      {
        "familyName": "Maruani", 
        "givenName": "Jean", 
        "type": "Person"
      }, 
      {
        "familyName": "Br\u00e4ndas", 
        "givenName": "Erkki J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Delgado-Barrio", 
        "givenName": "Gerardo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-50255-7_16", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-50254-0", 
        "978-3-319-50255-7"
      ], 
      "name": "Quantum Systems in Physics, Chemistry, and Biology", 
      "type": "Book"
    }, 
    "keywords": [
      "Li-like ions", 
      "body perturbation theory", 
      "oscillator strengths", 
      "Uehling-Serber approximation", 
      "relativistic energy approach", 
      "body perturbation theory calculations", 
      "hyperfine structure constants", 
      "self-energy part", 
      "oscillator strength values", 
      "oscillator strength parameters", 
      "perturbation theory", 
      "radiation transitions", 
      "alkali atoms", 
      "perturbation theory calculations", 
      "hyperfine structure", 
      "radiative transitions", 
      "ground state", 
      "polarization part", 
      "element atoms", 
      "structure constants", 
      "radiative corrections", 
      "theory calculations", 
      "ions", 
      "atoms", 
      "zeroth approximation", 
      "energy", 
      "transition", 
      "approximation", 
      "et al", 
      "spectra", 
      "formalism", 
      "experimental results", 
      "calculations", 
      "energy approach", 
      "theory", 
      "constants", 
      "heavy Li", 
      "state", 
      "account", 
      "Cs", 
      "correction", 
      "al", 
      "Li", 
      "structure", 
      "strength", 
      "contribution", 
      "parameters", 
      "strength parameters", 
      "results", 
      "order", 
      "values", 
      "part", 
      "basis", 
      "data", 
      "approach", 
      "analysis", 
      "strength values", 
      "procedure", 
      "Lamb shift polarization part", 
      "shift polarization part", 
      "Lamb shift self-energy part", 
      "shift self-energy part", 
      "generalized non-perturbative procedure", 
      "non-perturbative procedure", 
      "Ivanov-Ivanova et al", 
      "Rydberg states 2s1/2", 
      "states 2s1/2", 
      "computed oscillator strength values", 
      "Heavy Element Atoms"
    ], 
    "name": "Relativistic Many-Body Perturbation Theory Calculations of the Hyperfine Structure and Oscillator Strength Parameters for Some Heavy Element Atoms and Ions", 
    "pagination": "271-281", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1086115793"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-50255-7_16"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-50255-7_16", 
      "https://app.dimensions.ai/details/publication/pub.1086115793"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T19:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_189.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-50255-7_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-50255-7_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-50255-7_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-50255-7_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-50255-7_16'


 

This table displays all metadata directly associated to this object as RDF triples.

190 TRIPLES      23 PREDICATES      94 URIs      87 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-50255-7_16 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N07a4ca5687774ca0a7413b4e4cde068e
4 schema:datePublished 2017-05-19
5 schema:datePublishedReg 2017-05-19
6 schema:description The formalism of the relativistic many-body perturbation theory with an optimized zeroth approximation is applied to computing the energies and hyperfine structure constants for some heavy Li-like multicharged ions and alkali (caesium) atoms. The exchange-correlation, nuclear and radiative corrections are correctly and effectively taken into account. The modified Uehling-Serber approximation is used to take into account for the Lamb shift polarization part. In order to take into account the contribution of the Lamb shift self-energy part we have used the generalized non-perturbative procedure, developed by Ivanov-Ivanova et al. The energies and oscillator strengths of radiation transition in spectra of some Li-like ions (Z = 20 – 70) and Cs are computed on the basis of the combined relativistic energy approach (S-matrix formalism) and relativistic many-body perturbation theory. The data on oscillator strengths of radiative transitions from the ground state to the low-excited and Rydberg states 2s1/2 – np1/2,3/2, np1/2,3/2-nd3/2,5/2 (n = 2 – 12) in the Li-like ions are presented. Some results are obtained at first. It is performed an analysis of the computed oscillator strength values with available theoretical and experimental results.
7 schema:editor N64949cbfad1e48ef89cd368e53156faf
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nba9c645e464c4a3e87104cda684aeb42
12 schema:keywords Cs
13 Heavy Element Atoms
14 Ivanov-Ivanova et al
15 Lamb shift polarization part
16 Lamb shift self-energy part
17 Li
18 Li-like ions
19 Rydberg states 2s1/2
20 Uehling-Serber approximation
21 account
22 al
23 alkali atoms
24 analysis
25 approach
26 approximation
27 atoms
28 basis
29 body perturbation theory
30 body perturbation theory calculations
31 calculations
32 computed oscillator strength values
33 constants
34 contribution
35 correction
36 data
37 element atoms
38 energy
39 energy approach
40 et al
41 experimental results
42 formalism
43 generalized non-perturbative procedure
44 ground state
45 heavy Li
46 hyperfine structure
47 hyperfine structure constants
48 ions
49 non-perturbative procedure
50 order
51 oscillator strength parameters
52 oscillator strength values
53 oscillator strengths
54 parameters
55 part
56 perturbation theory
57 perturbation theory calculations
58 polarization part
59 procedure
60 radiation transitions
61 radiative corrections
62 radiative transitions
63 relativistic energy approach
64 results
65 self-energy part
66 shift polarization part
67 shift self-energy part
68 spectra
69 state
70 states 2s1/2
71 strength
72 strength parameters
73 strength values
74 structure
75 structure constants
76 theory
77 theory calculations
78 transition
79 values
80 zeroth approximation
81 schema:name Relativistic Many-Body Perturbation Theory Calculations of the Hyperfine Structure and Oscillator Strength Parameters for Some Heavy Element Atoms and Ions
82 schema:pagination 271-281
83 schema:productId N238c985e4887471db1bef56b3206b87e
84 Ncbed0192881f44e39c101054023b5e97
85 schema:publisher Nffa72898d65544ce8c9ab3482dc20294
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086115793
87 https://doi.org/10.1007/978-3-319-50255-7_16
88 schema:sdDatePublished 2021-12-01T19:59
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher Na5510783863843d593a3fb6fd87b46c8
91 schema:url https://doi.org/10.1007/978-3-319-50255-7_16
92 sgo:license sg:explorer/license/
93 sgo:sdDataset chapters
94 rdf:type schema:Chapter
95 N06a8ba09435a40c895209fcf7423e7fe rdf:first sg:person.012121010537.31
96 rdf:rest Nf67c6e8951ab41a0a306db8c0f524650
97 N07a4ca5687774ca0a7413b4e4cde068e rdf:first sg:person.014624751311.43
98 rdf:rest N06a8ba09435a40c895209fcf7423e7fe
99 N0dcc5c902f6c4f819e820afecca6176d rdf:first sg:person.07747731501.02
100 rdf:rest N17c34a4441084d85833ca58867520536
101 N17c34a4441084d85833ca58867520536 rdf:first sg:person.011072166311.87
102 rdf:rest rdf:nil
103 N238c985e4887471db1bef56b3206b87e schema:name doi
104 schema:value 10.1007/978-3-319-50255-7_16
105 rdf:type schema:PropertyValue
106 N3085eefcfa0f4ba299c44655d1bf3ce2 rdf:first N5d0994319557441e81314eb9b63c0513
107 rdf:rest rdf:nil
108 N350f72029e4242249d42029dd7b7b8aa schema:familyName Tadjer
109 schema:givenName Alia
110 rdf:type schema:Person
111 N5d0994319557441e81314eb9b63c0513 schema:familyName Delgado-Barrio
112 schema:givenName Gerardo
113 rdf:type schema:Person
114 N64949cbfad1e48ef89cd368e53156faf rdf:first N350f72029e4242249d42029dd7b7b8aa
115 rdf:rest Nae7c7a1bc6c04efbaccd9269fb43fe6a
116 N8161f39be27c485f893ff672de4fa111 rdf:first Na9084412c95d4b778953dc319617949d
117 rdf:rest N9b7e0bc7da154f7bbc7c316c2b0d30af
118 N9b7e0bc7da154f7bbc7c316c2b0d30af rdf:first Ne042b5a965364f5c96551c00c5859a35
119 rdf:rest N3085eefcfa0f4ba299c44655d1bf3ce2
120 Na5510783863843d593a3fb6fd87b46c8 schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 Na9084412c95d4b778953dc319617949d schema:familyName Maruani
123 schema:givenName Jean
124 rdf:type schema:Person
125 Nae7c7a1bc6c04efbaccd9269fb43fe6a rdf:first Nf1eff43486e7484482e4794bdf27ccd4
126 rdf:rest N8161f39be27c485f893ff672de4fa111
127 Nba9c645e464c4a3e87104cda684aeb42 schema:isbn 978-3-319-50254-0
128 978-3-319-50255-7
129 schema:name Quantum Systems in Physics, Chemistry, and Biology
130 rdf:type schema:Book
131 Ncbed0192881f44e39c101054023b5e97 schema:name dimensions_id
132 schema:value pub.1086115793
133 rdf:type schema:PropertyValue
134 Nd312ec5ee7b1458cb8cf5ca6a8b1e59b rdf:first sg:person.014374412411.27
135 rdf:rest N0dcc5c902f6c4f819e820afecca6176d
136 Nd989fe84f2144eccae75d038f243ba17 rdf:first sg:person.013001451411.90
137 rdf:rest Nd312ec5ee7b1458cb8cf5ca6a8b1e59b
138 Ne042b5a965364f5c96551c00c5859a35 schema:familyName Brändas
139 schema:givenName Erkki J.
140 rdf:type schema:Person
141 Ne931dace9f00420499c33a29ccb304bd schema:affiliation grid-institutes:grid.436916.f
142 schema:familyName Smirnov
143 schema:givenName A. V.
144 rdf:type schema:Person
145 Nf1eff43486e7484482e4794bdf27ccd4 schema:familyName Pavlov
146 schema:givenName Rossen
147 rdf:type schema:Person
148 Nf67c6e8951ab41a0a306db8c0f524650 rdf:first Ne931dace9f00420499c33a29ccb304bd
149 rdf:rest Nd989fe84f2144eccae75d038f243ba17
150 Nffa72898d65544ce8c9ab3482dc20294 schema:name Springer Nature
151 rdf:type schema:Organisation
152 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
153 schema:name Physical Sciences
154 rdf:type schema:DefinedTerm
155 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
156 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
157 rdf:type schema:DefinedTerm
158 sg:person.011072166311.87 schema:affiliation grid-institutes:grid.436916.f
159 schema:familyName Mansarliysky
160 schema:givenName V. F.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011072166311.87
162 rdf:type schema:Person
163 sg:person.012121010537.31 schema:affiliation grid-institutes:grid.436916.f
164 schema:familyName Zaichko
165 schema:givenName P. A.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012121010537.31
167 rdf:type schema:Person
168 sg:person.013001451411.90 schema:affiliation grid-institutes:grid.436916.f
169 schema:familyName Buyadzhi
170 schema:givenName V. V.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013001451411.90
172 rdf:type schema:Person
173 sg:person.014374412411.27 schema:affiliation grid-institutes:grid.436916.f
174 schema:familyName Ternovsky
175 schema:givenName V. B.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014374412411.27
177 rdf:type schema:Person
178 sg:person.014624751311.43 schema:affiliation grid-institutes:grid.436916.f
179 schema:familyName Khetselius
180 schema:givenName O. Yu.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014624751311.43
182 rdf:type schema:Person
183 sg:person.07747731501.02 schema:affiliation grid-institutes:grid.436916.f
184 schema:familyName Florko
185 schema:givenName T. A.
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07747731501.02
187 rdf:type schema:Person
188 grid-institutes:grid.436916.f schema:alternateName Odessa State Environmental University (OSENU), L’vovskaya str. 15, 65016, Odessa-9, Ukraine
189 schema:name Odessa State Environmental University (OSENU), L’vovskaya str. 15, 65016, Odessa-9, Ukraine
190 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...