Tunable Magnetic Anisotropy and Magnetization Reversal in Microwires View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

A. Chizhik , A. Stupakiewicz , J. Gonzalez

ABSTRACT

Surface magnetization reversal of Co-rich and Fe-rich amorphous glass covered microwires in the presence of torsion mechanical stress has been studied by magneto-optical Kerr effect. The dependence of the angle of the helical anisotropy on the applied torsion stress has been obtained based on the analysis of the magneto-optical experimental results. The value of the limit angle of the torsion stress induced helical anisotropy has been found. The influence of temperature on surface magnetic structure and magnetization reversal process under electric current and external magnetic field has been investigated. It was found different types of domain structures depending on the temperature and the microwire composition. These types are characterized by the different domain period and the angle of the inclination of domain walls. It was established the direct correlation between surface domain structures and hysteresis loops. It was observed original mechanism of the domain structure transformation—unusual change in the domain structure without movement of domain walls. It was found that the high-frequency electric current at room temperature has a great and essential influence on the surface magnetization reversal and surface domain structure. The induced formation and transformation of the surface magnetic structure are key processes that determine the stable operation of giant magneto-impedance devices. More... »

PAGES

111-129

References to SciGraph publications

Book

TITLE

High Performance Soft Magnetic Materials

ISBN

978-3-319-49705-1
978-3-319-49707-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-49707-5_5

DOI

http://dx.doi.org/10.1007/978-3-319-49707-5_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1074199280


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of the Basque Country", 
          "id": "https://www.grid.ac/institutes/grid.11480.3c", 
          "name": [
            "Departmento Facultad de Quimica, Universidad del Pa\u00eds Vasco UPV/EHU"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chizhik", 
        "givenName": "A.", 
        "id": "sg:person.07641324705.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07641324705.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bia\u0142ystok", 
          "id": "https://www.grid.ac/institutes/grid.25588.32", 
          "name": [
            "Laboratory of Magnetism, Faculty of Physics, University of Bialystok"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stupakiewicz", 
        "givenName": "A.", 
        "id": "sg:person.014372372637.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014372372637.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of the Basque Country", 
          "id": "https://www.grid.ac/institutes/grid.11480.3c", 
          "name": [
            "Departmento Facultad de Quimica, Universidad del Pa\u00eds Vasco UPV/EHU"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonzalez", 
        "givenName": "J.", 
        "id": "sg:person.010244506427.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010244506427.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0304-8853(02)00522-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004086623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(02)00522-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004086623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2008.11.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010181258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ma4010037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010261748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2010.11.089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013356706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2013.12.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018357323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4896758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026467598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sna.2009.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026972127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnoncrysol.2006.12.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029207443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/32/16/304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035452624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/36/5/301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041128469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-7-223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041312934", 
          "https://doi.org/10.1186/1556-276x-7-223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1521-396x(200202)189:2<599::aid-pssa599>3.0.co;2-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044809905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2015/958341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048763345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2013.08.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050361824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4902147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053714124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.112104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057659659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1421209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057704988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1616971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057726261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3460292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057955493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4807595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058076506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.42.419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060447151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.42.419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060447151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.134421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060632206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.134421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060632206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.212401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060634451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.212401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060634451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/20.737472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061117257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.2002.802397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061675005"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "Surface magnetization reversal of Co-rich and Fe-rich amorphous glass covered microwires in the presence of torsion mechanical stress has been studied by magneto-optical Kerr effect. The dependence of the angle of the helical anisotropy on the applied torsion stress has been obtained based on the analysis of the magneto-optical experimental results. The value of the limit angle of the torsion stress induced helical anisotropy has been found. The influence of temperature on surface magnetic structure and magnetization reversal process under electric current and external magnetic field has been investigated. It was found different types of domain structures depending on the temperature and the microwire composition. These types are characterized by the different domain period and the angle of the inclination of domain walls. It was established the direct correlation between surface domain structures and hysteresis loops. It was observed original mechanism of the domain structure transformation\u2014unusual change in the domain structure without movement of domain walls. It was found that the high-frequency electric current at room temperature has a great and essential influence on the surface magnetization reversal and surface domain structure. The induced formation and transformation of the surface magnetic structure are key processes that determine the stable operation of giant magneto-impedance devices.", 
    "editor": [
      {
        "familyName": "Zhukov", 
        "givenName": "Arcady", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-49707-5_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-49705-1", 
        "978-3-319-49707-5"
      ], 
      "name": "High Performance Soft Magnetic Materials", 
      "type": "Book"
    }, 
    "name": "Tunable Magnetic Anisotropy and Magnetization Reversal in Microwires", 
    "pagination": "111-129", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-49707-5_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5fc416f8295c1bc00a63be9c35f872ec82505b55059844caab299489cc768aab"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1074199280"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-49707-5_5", 
      "https://app.dimensions.ai/details/publication/pub.1074199280"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000331.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-49707-5_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-49707-5_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-49707-5_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-49707-5_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-49707-5_5'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      23 PREDICATES      52 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-49707-5_5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N6e6bfcda3ab742939ff3151b706eca0e
4 schema:citation sg:pub.10.1186/1556-276x-7-223
5 https://doi.org/10.1002/1521-396x(200202)189:2<599::aid-pssa599>3.0.co;2-d
6 https://doi.org/10.1016/j.jmmm.2008.11.073
7 https://doi.org/10.1016/j.jmmm.2010.11.089
8 https://doi.org/10.1016/j.jmmm.2013.08.065
9 https://doi.org/10.1016/j.jmmm.2013.12.042
10 https://doi.org/10.1016/j.jnoncrysol.2006.12.113
11 https://doi.org/10.1016/j.sna.2009.09.005
12 https://doi.org/10.1016/s0304-8853(02)00522-x
13 https://doi.org/10.1063/1.112104
14 https://doi.org/10.1063/1.1421209
15 https://doi.org/10.1063/1.1616971
16 https://doi.org/10.1063/1.3460292
17 https://doi.org/10.1063/1.4807595
18 https://doi.org/10.1063/1.4896758
19 https://doi.org/10.1063/1.4902147
20 https://doi.org/10.1088/0022-3727/32/16/304
21 https://doi.org/10.1088/0022-3727/36/5/301
22 https://doi.org/10.1103/physrev.42.419
23 https://doi.org/10.1103/physrevb.81.134421
24 https://doi.org/10.1103/physrevb.82.212401
25 https://doi.org/10.1109/20.737472
26 https://doi.org/10.1109/tmag.2002.802397
27 https://doi.org/10.1155/2015/958341
28 https://doi.org/10.3390/ma4010037
29 schema:datePublished 2017
30 schema:datePublishedReg 2017-01-01
31 schema:description Surface magnetization reversal of Co-rich and Fe-rich amorphous glass covered microwires in the presence of torsion mechanical stress has been studied by magneto-optical Kerr effect. The dependence of the angle of the helical anisotropy on the applied torsion stress has been obtained based on the analysis of the magneto-optical experimental results. The value of the limit angle of the torsion stress induced helical anisotropy has been found. The influence of temperature on surface magnetic structure and magnetization reversal process under electric current and external magnetic field has been investigated. It was found different types of domain structures depending on the temperature and the microwire composition. These types are characterized by the different domain period and the angle of the inclination of domain walls. It was established the direct correlation between surface domain structures and hysteresis loops. It was observed original mechanism of the domain structure transformation—unusual change in the domain structure without movement of domain walls. It was found that the high-frequency electric current at room temperature has a great and essential influence on the surface magnetization reversal and surface domain structure. The induced formation and transformation of the surface magnetic structure are key processes that determine the stable operation of giant magneto-impedance devices.
32 schema:editor N781d52efe9034178b1dd39ca77ad333d
33 schema:genre chapter
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf Nee96675def0341f0b51a3af178bab16a
37 schema:name Tunable Magnetic Anisotropy and Magnetization Reversal in Microwires
38 schema:pagination 111-129
39 schema:productId N352f26f7353b436a80d892f4329a374d
40 N58639f8984f74b0387460fbe81f1a786
41 N71c774f12ccc4e65b65387c050e155c9
42 schema:publisher N59935d3f018d4be590e6b6c7db96f9f5
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074199280
44 https://doi.org/10.1007/978-3-319-49707-5_5
45 schema:sdDatePublished 2019-04-15T22:08
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N4f56d5729ef94605b132fd1eb28f3be1
48 schema:url http://link.springer.com/10.1007/978-3-319-49707-5_5
49 sgo:license sg:explorer/license/
50 sgo:sdDataset chapters
51 rdf:type schema:Chapter
52 N13ef40ca2ebb49178e6086b8646b227b rdf:first sg:person.014372372637.81
53 rdf:rest N7a942b7158de405a86c20cd89df5c67f
54 N352f26f7353b436a80d892f4329a374d schema:name doi
55 schema:value 10.1007/978-3-319-49707-5_5
56 rdf:type schema:PropertyValue
57 N4f56d5729ef94605b132fd1eb28f3be1 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N58639f8984f74b0387460fbe81f1a786 schema:name dimensions_id
60 schema:value pub.1074199280
61 rdf:type schema:PropertyValue
62 N59935d3f018d4be590e6b6c7db96f9f5 schema:location Cham
63 schema:name Springer International Publishing
64 rdf:type schema:Organisation
65 N5a4eedb339264b0787b846f2c3cae583 schema:familyName Zhukov
66 schema:givenName Arcady
67 rdf:type schema:Person
68 N6e6bfcda3ab742939ff3151b706eca0e rdf:first sg:person.07641324705.14
69 rdf:rest N13ef40ca2ebb49178e6086b8646b227b
70 N71c774f12ccc4e65b65387c050e155c9 schema:name readcube_id
71 schema:value 5fc416f8295c1bc00a63be9c35f872ec82505b55059844caab299489cc768aab
72 rdf:type schema:PropertyValue
73 N781d52efe9034178b1dd39ca77ad333d rdf:first N5a4eedb339264b0787b846f2c3cae583
74 rdf:rest rdf:nil
75 N7a942b7158de405a86c20cd89df5c67f rdf:first sg:person.010244506427.80
76 rdf:rest rdf:nil
77 Nee96675def0341f0b51a3af178bab16a schema:isbn 978-3-319-49705-1
78 978-3-319-49707-5
79 schema:name High Performance Soft Magnetic Materials
80 rdf:type schema:Book
81 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
82 schema:name Engineering
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
85 schema:name Materials Engineering
86 rdf:type schema:DefinedTerm
87 sg:person.010244506427.80 schema:affiliation https://www.grid.ac/institutes/grid.11480.3c
88 schema:familyName Gonzalez
89 schema:givenName J.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010244506427.80
91 rdf:type schema:Person
92 sg:person.014372372637.81 schema:affiliation https://www.grid.ac/institutes/grid.25588.32
93 schema:familyName Stupakiewicz
94 schema:givenName A.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014372372637.81
96 rdf:type schema:Person
97 sg:person.07641324705.14 schema:affiliation https://www.grid.ac/institutes/grid.11480.3c
98 schema:familyName Chizhik
99 schema:givenName A.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07641324705.14
101 rdf:type schema:Person
102 sg:pub.10.1186/1556-276x-7-223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041312934
103 https://doi.org/10.1186/1556-276x-7-223
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1002/1521-396x(200202)189:2<599::aid-pssa599>3.0.co;2-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1044809905
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.jmmm.2008.11.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010181258
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.jmmm.2010.11.089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013356706
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.jmmm.2013.08.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050361824
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.jmmm.2013.12.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018357323
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.jnoncrysol.2006.12.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029207443
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.sna.2009.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026972127
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/s0304-8853(02)00522-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004086623
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1063/1.112104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057659659
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1063/1.1421209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057704988
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.1616971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057726261
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1063/1.3460292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057955493
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1063/1.4807595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058076506
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1063/1.4896758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026467598
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1063/1.4902147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053714124
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1088/0022-3727/32/16/304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035452624
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1088/0022-3727/36/5/301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041128469
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrev.42.419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060447151
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevb.81.134421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060632206
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevb.82.212401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060634451
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/20.737472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061117257
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/tmag.2002.802397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061675005
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1155/2015/958341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048763345
150 rdf:type schema:CreativeWork
151 https://doi.org/10.3390/ma4010037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010261748
152 rdf:type schema:CreativeWork
153 https://www.grid.ac/institutes/grid.11480.3c schema:alternateName University of the Basque Country
154 schema:name Departmento Facultad de Quimica, Universidad del País Vasco UPV/EHU
155 rdf:type schema:Organization
156 https://www.grid.ac/institutes/grid.25588.32 schema:alternateName University of Białystok
157 schema:name Laboratory of Magnetism, Faculty of Physics, University of Bialystok
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...