An Energy-Efficient Process Replication Algorithm in Virtual Machine Environments View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

Tomoya Enokido , Makoto Takizawa

ABSTRACT

Server cluster systems are widely used to realize fault-tolerant, scalable, and high performance application services with virtual machine technologies. In order to provide reliable application services, multiple replicas of each application process can be redundantly performed on multiple virtual machines. On the other hand, a server cluster system consumes a large amount of electric energy since multiple replicas of each application process are performed on multiple virtual machines. It is critical to discuss how to realize not only reliable but also energyefficient server cluster systems. In this paper, we propose the redundant energy consumption laxity based (RECLB) algorithm to select multiple virtual machines for redundantly performing each application process in presence of server faults so that the total energy consumption of a server cluster and the average computation time of each process can be reduced. We evaluate the RECLB algorithm in terms of the total energy consumption of a server cluster and the average computation time of each process compared with the basic round-robin (RR) algorithm. More... »

PAGES

105-114

Book

TITLE

Advances on Broad-Band Wireless Computing, Communication and Applications

ISBN

978-3-319-49105-9
978-3-319-49106-6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-49106-6_10

DOI

http://dx.doi.org/10.1007/978-3-319-49106-6_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020553329


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rissho University", 
          "id": "https://www.grid.ac/institutes/grid.442924.d", 
          "name": [
            "Faculty of Business Administration, Rissho University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Enokido", 
        "givenName": "Tomoya", 
        "id": "sg:person.011323525173.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011323525173.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Advanced Sciences, Faculty of Science and EngineeringHosei University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takizawa", 
        "givenName": "Makoto", 
        "id": "sg:person.010241424037.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010241424037.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/357172.357176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001982359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsyst.2010.2047296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061338840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2010.2060453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061624601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2012.2206357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061625701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tii.2014.2303315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061632445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cisis.2015.18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094447487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/nbis.2015.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095706824"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "Server cluster systems are widely used to realize fault-tolerant, scalable, and high performance application services with virtual machine technologies. In order to provide reliable application services, multiple replicas of each application process can be redundantly performed on multiple virtual machines. On the other hand, a server cluster system consumes a large amount of electric energy since multiple replicas of each application process are performed on multiple virtual machines. It is critical to discuss how to realize not only reliable but also energyefficient server cluster systems. In this paper, we propose the redundant energy consumption laxity based (RECLB) algorithm to select multiple virtual machines for redundantly performing each application process in presence of server faults so that the total energy consumption of a server cluster and the average computation time of each process can be reduced. We evaluate the RECLB algorithm in terms of the total energy consumption of a server cluster and the average computation time of each process compared with the basic round-robin (RR) algorithm.", 
    "editor": [
      {
        "familyName": "Barolli", 
        "givenName": "Leonard", 
        "type": "Person"
      }, 
      {
        "familyName": "Xhafa", 
        "givenName": "Fatos", 
        "type": "Person"
      }, 
      {
        "familyName": "Yim", 
        "givenName": "Kangbin", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-49106-6_10", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-49105-9", 
        "978-3-319-49106-6"
      ], 
      "name": "Advances on Broad-Band Wireless Computing, Communication and Applications", 
      "type": "Book"
    }, 
    "name": "An Energy-Efficient Process Replication Algorithm in Virtual Machine Environments", 
    "pagination": "105-114", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-49106-6_10"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "61eed98cd3e8e68f018255b83406148a4380ee4964a773aa110dc0b2b0842f7c"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020553329"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-49106-6_10", 
      "https://app.dimensions.ai/details/publication/pub.1020553329"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T15:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000035.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-49106-6_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-49106-6_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-49106-6_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-49106-6_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-49106-6_10'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-49106-6_10 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N01ada4be192f4ff6a2653db8233f3ffe
4 schema:citation https://doi.org/10.1109/cisis.2015.18
5 https://doi.org/10.1109/jsyst.2010.2047296
6 https://doi.org/10.1109/nbis.2015.9
7 https://doi.org/10.1109/tie.2010.2060453
8 https://doi.org/10.1109/tie.2012.2206357
9 https://doi.org/10.1109/tii.2014.2303315
10 https://doi.org/10.1145/357172.357176
11 schema:datePublished 2017
12 schema:datePublishedReg 2017-01-01
13 schema:description Server cluster systems are widely used to realize fault-tolerant, scalable, and high performance application services with virtual machine technologies. In order to provide reliable application services, multiple replicas of each application process can be redundantly performed on multiple virtual machines. On the other hand, a server cluster system consumes a large amount of electric energy since multiple replicas of each application process are performed on multiple virtual machines. It is critical to discuss how to realize not only reliable but also energyefficient server cluster systems. In this paper, we propose the redundant energy consumption laxity based (RECLB) algorithm to select multiple virtual machines for redundantly performing each application process in presence of server faults so that the total energy consumption of a server cluster and the average computation time of each process can be reduced. We evaluate the RECLB algorithm in terms of the total energy consumption of a server cluster and the average computation time of each process compared with the basic round-robin (RR) algorithm.
14 schema:editor N9c7ed64a1ef94f86845f85a8164623f9
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N14804f732dee4ab4b6d3cc41ee17721e
19 schema:name An Energy-Efficient Process Replication Algorithm in Virtual Machine Environments
20 schema:pagination 105-114
21 schema:productId N0d176dcb66c2415f8502f604144275ef
22 N825b4efb51fc41799b535deaba066528
23 N87dfb986569c442a863965ea71307a11
24 schema:publisher N622a523157ee490c8e9b47481e5d474c
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020553329
26 https://doi.org/10.1007/978-3-319-49106-6_10
27 schema:sdDatePublished 2019-04-15T15:07
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N1aa0d2015a2e43d7bc795bc2a5a45cf3
30 schema:url http://link.springer.com/10.1007/978-3-319-49106-6_10
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N01ada4be192f4ff6a2653db8233f3ffe rdf:first sg:person.011323525173.27
35 rdf:rest N807f8a5caad640fc9774873c4c99f65c
36 N0d176dcb66c2415f8502f604144275ef schema:name readcube_id
37 schema:value 61eed98cd3e8e68f018255b83406148a4380ee4964a773aa110dc0b2b0842f7c
38 rdf:type schema:PropertyValue
39 N14804f732dee4ab4b6d3cc41ee17721e schema:isbn 978-3-319-49105-9
40 978-3-319-49106-6
41 schema:name Advances on Broad-Band Wireless Computing, Communication and Applications
42 rdf:type schema:Book
43 N1aa0d2015a2e43d7bc795bc2a5a45cf3 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N284059a2577c4f8a8c71b04e2d0f941a schema:familyName Barolli
46 schema:givenName Leonard
47 rdf:type schema:Person
48 N622a523157ee490c8e9b47481e5d474c schema:location Cham
49 schema:name Springer International Publishing
50 rdf:type schema:Organisation
51 N7dd7fdbde52d4364ab13235ac5960712 rdf:first Neb8b4c41b3504c75ad92abcfa793c1fa
52 rdf:rest Nd7675afa401442a9851a8546a16b69d1
53 N807f8a5caad640fc9774873c4c99f65c rdf:first sg:person.010241424037.00
54 rdf:rest rdf:nil
55 N825b4efb51fc41799b535deaba066528 schema:name dimensions_id
56 schema:value pub.1020553329
57 rdf:type schema:PropertyValue
58 N87dfb986569c442a863965ea71307a11 schema:name doi
59 schema:value 10.1007/978-3-319-49106-6_10
60 rdf:type schema:PropertyValue
61 N9657d75b89af4702829d48f60af3e0d6 schema:familyName Yim
62 schema:givenName Kangbin
63 rdf:type schema:Person
64 N9a5df7467be543a2a46faea29e5d578d schema:name Department of Advanced Sciences, Faculty of Science and EngineeringHosei University
65 rdf:type schema:Organization
66 N9c7ed64a1ef94f86845f85a8164623f9 rdf:first N284059a2577c4f8a8c71b04e2d0f941a
67 rdf:rest N7dd7fdbde52d4364ab13235ac5960712
68 Nd7675afa401442a9851a8546a16b69d1 rdf:first N9657d75b89af4702829d48f60af3e0d6
69 rdf:rest rdf:nil
70 Neb8b4c41b3504c75ad92abcfa793c1fa schema:familyName Xhafa
71 schema:givenName Fatos
72 rdf:type schema:Person
73 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
74 schema:name Information and Computing Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
77 schema:name Artificial Intelligence and Image Processing
78 rdf:type schema:DefinedTerm
79 sg:person.010241424037.00 schema:affiliation N9a5df7467be543a2a46faea29e5d578d
80 schema:familyName Takizawa
81 schema:givenName Makoto
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010241424037.00
83 rdf:type schema:Person
84 sg:person.011323525173.27 schema:affiliation https://www.grid.ac/institutes/grid.442924.d
85 schema:familyName Enokido
86 schema:givenName Tomoya
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011323525173.27
88 rdf:type schema:Person
89 https://doi.org/10.1109/cisis.2015.18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094447487
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1109/jsyst.2010.2047296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061338840
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1109/nbis.2015.9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095706824
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/tie.2010.2060453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061624601
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/tie.2012.2206357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061625701
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/tii.2014.2303315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061632445
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1145/357172.357176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001982359
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.442924.d schema:alternateName Rissho University
104 schema:name Faculty of Business Administration, Rissho University
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...