Leveraging Composition of Object Regions for Aesthetic Assessment of Photographs View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Hong Lu , Zeping Yao , Yunhan Bai , Zhibin Zhu , Bohong Yang , Lukun Chen , Wenqiang Zhang

ABSTRACT

Evaluating the aesthetic quality of photos automatically can be considered as a highly challenging task. In this paper, we propose and investigate a novel method for the aesthetic assessment of photos. We integrate photo composition of salient object regions into the assessment. Specifically, we first evaluate the objectness of regions in photos by considering the spatial location and shape of the image salient object regions. Then, we extract features based on the spatial composition of objects. The proposed features fuse aesthetics rules with composition of semantic regions. The proposed method is evaluated on a large dataset. Experimental results demonstrate the efficacy of the proposed method. More... »

PAGES

160-169

References to SciGraph publications

  • 2014. Leveraging Color Harmony and Spatial Context for Aesthetic Assessment of Photographs in ADVANCES IN MULTIMEDIA INFORMATION PROCESSING – PCM 2014
  • Book

    TITLE

    Advances in Multimedia Information Processing - PCM 2016

    ISBN

    978-3-319-48889-9
    978-3-319-48890-5

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-48890-5_16

    DOI

    http://dx.doi.org/10.1007/978-3-319-48890-5_16

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1005069860


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science Fudan University Shanghai China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Hong", 
            "id": "sg:person.013576203375.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576203375.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science Fudan University Shanghai China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yao", 
            "givenName": "Zeping", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science Fudan University Shanghai China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bai", 
            "givenName": "Yunhan", 
            "id": "sg:person.014723550211.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014723550211.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science Fudan University Shanghai China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhu", 
            "givenName": "Zhibin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Shanghai Engineering Research Center for Video Technology and System, School of Computer Science Fudan University Shanghai China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Bohong", 
            "id": "sg:person.07565565401.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07565565401.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "College of Information Science and Technology Nanjing Agricultural University Nanjing China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Lukun", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Shanghai Engineering Research Center for Video Technology and System, School of Computer Science Fudan University Shanghai China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Wenqiang", 
            "id": "sg:person.010531241272.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010531241272.46"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-319-13168-9_36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016642951", 
              "https://doi.org/10.1007/978-3-319-13168-9_36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-8659.2012.03212.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024754943"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jstsp.2009.2015077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061337861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tip.2014.2303650", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061643868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmm.2013.2268051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061698162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmm.2013.2269899", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061698170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2011.5995467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093657680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2012.6247954", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093738517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2014.414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094493013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2346830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101982469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2346830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101982469"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016", 
        "datePublishedReg": "2016-01-01", 
        "description": "Evaluating the aesthetic quality of photos automatically can be considered as a highly challenging task. In this paper, we propose and investigate a novel method for the aesthetic assessment of photos. We integrate photo composition of salient object regions into the assessment. Specifically, we first evaluate the objectness of regions in photos by considering the spatial location and shape of the image salient object regions. Then, we extract features based on the spatial composition of objects. The proposed features fuse aesthetics rules with composition of semantic regions. The proposed method is evaluated on a large dataset. Experimental results demonstrate the efficacy of the proposed method.", 
        "editor": [
          {
            "familyName": "Chen", 
            "givenName": "Enqing", 
            "type": "Person"
          }, 
          {
            "familyName": "Gong", 
            "givenName": "Yihong", 
            "type": "Person"
          }, 
          {
            "familyName": "Tie", 
            "givenName": "Yun", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-48890-5_16", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-48889-9", 
            "978-3-319-48890-5"
          ], 
          "name": "Advances in Multimedia Information Processing - PCM 2016", 
          "type": "Book"
        }, 
        "name": "Leveraging Composition of Object Regions for Aesthetic Assessment of Photographs", 
        "pagination": "160-169", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-48890-5_16"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1827d20bdfe6a13fcf7fce3636f1516416666753dbfd56e1f2a208aa460d9846"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1005069860"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-48890-5_16", 
          "https://app.dimensions.ai/details/publication/pub.1005069860"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T23:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000306.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-48890-5_16"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48890-5_16'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48890-5_16'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48890-5_16'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48890-5_16'


     

    This table displays all metadata directly associated to this object as RDF triples.

    156 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-48890-5_16 schema:about anzsrc-for:17
    2 anzsrc-for:1701
    3 schema:author N40ddc6a84597441a9e7d2f87a479fd54
    4 schema:citation sg:pub.10.1007/978-3-319-13168-9_36
    5 https://doi.org/10.1109/cvpr.2011.5995467
    6 https://doi.org/10.1109/cvpr.2012.6247954
    7 https://doi.org/10.1109/cvpr.2014.414
    8 https://doi.org/10.1109/jstsp.2009.2015077
    9 https://doi.org/10.1109/tip.2014.2303650
    10 https://doi.org/10.1109/tmm.2013.2268051
    11 https://doi.org/10.1109/tmm.2013.2269899
    12 https://doi.org/10.1111/j.1467-8659.2012.03212.x
    13 https://doi.org/10.2307/2346830
    14 schema:datePublished 2016
    15 schema:datePublishedReg 2016-01-01
    16 schema:description Evaluating the aesthetic quality of photos automatically can be considered as a highly challenging task. In this paper, we propose and investigate a novel method for the aesthetic assessment of photos. We integrate photo composition of salient object regions into the assessment. Specifically, we first evaluate the objectness of regions in photos by considering the spatial location and shape of the image salient object regions. Then, we extract features based on the spatial composition of objects. The proposed features fuse aesthetics rules with composition of semantic regions. The proposed method is evaluated on a large dataset. Experimental results demonstrate the efficacy of the proposed method.
    17 schema:editor Nc8253fbe44e84e6a9620418108257183
    18 schema:genre chapter
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N4415da7ac151421ba6e886f3edd614c8
    22 schema:name Leveraging Composition of Object Regions for Aesthetic Assessment of Photographs
    23 schema:pagination 160-169
    24 schema:productId N02ab5d1a050f4e8996e699eb4c76eba0
    25 Naddcc52a08c442cfa4b0e01e9e63af77
    26 Nddee9cb72a2144d4b8af2437e18e2884
    27 schema:publisher N72a327278a3640ebad9d5d9dd8763847
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005069860
    29 https://doi.org/10.1007/978-3-319-48890-5_16
    30 schema:sdDatePublished 2019-04-15T23:02
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher Nc6f4c04ec03e4cc3bd00b870f6a06d20
    33 schema:url http://link.springer.com/10.1007/978-3-319-48890-5_16
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset chapters
    36 rdf:type schema:Chapter
    37 N02ab5d1a050f4e8996e699eb4c76eba0 schema:name doi
    38 schema:value 10.1007/978-3-319-48890-5_16
    39 rdf:type schema:PropertyValue
    40 N0617fe36e97d449da4fba56e3634af3f rdf:first sg:person.010531241272.46
    41 rdf:rest rdf:nil
    42 N0b26118610fe4095902a848b2d86db38 schema:name Shanghai Engineering Research Center for Video Technology and System, School of Computer Science Fudan University Shanghai China
    43 rdf:type schema:Organization
    44 N0fddce276c0146b5acbd1b68c33a7f0b schema:familyName Chen
    45 schema:givenName Enqing
    46 rdf:type schema:Person
    47 N16ef344b97e547ed828db918af6b37db schema:name Shanghai Engineering Research Center for Video Technology and System, School of Computer Science Fudan University Shanghai China
    48 rdf:type schema:Organization
    49 N250409f7defd440786770b9d6710642c rdf:first sg:person.07565565401.60
    50 rdf:rest Nfb26b84e6f5f424e89db19cd9ce9fe52
    51 N2605f38730784848ac03d6fd11511c02 schema:name Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science Fudan University Shanghai China
    52 rdf:type schema:Organization
    53 N3baf346cb5de4067bfcf1f29f8b82f4b schema:name College of Information Science and Technology Nanjing Agricultural University Nanjing China
    54 rdf:type schema:Organization
    55 N40ddc6a84597441a9e7d2f87a479fd54 rdf:first sg:person.013576203375.62
    56 rdf:rest Nac3a91851b034ba1b5710246b9aa3cc7
    57 N4415da7ac151421ba6e886f3edd614c8 schema:isbn 978-3-319-48889-9
    58 978-3-319-48890-5
    59 schema:name Advances in Multimedia Information Processing - PCM 2016
    60 rdf:type schema:Book
    61 N4b5f8bc19de4491d89864155ae3d5b6c schema:affiliation N84c3fe14ea4043aa98e93da092666129
    62 schema:familyName Zhu
    63 schema:givenName Zhibin
    64 rdf:type schema:Person
    65 N4e6c2458333746958db4a86b06c7ea19 rdf:first sg:person.014723550211.22
    66 rdf:rest N801da4857cb0434d8dfef58a91a97695
    67 N6a520fd4b0cb403089ddd0933c1f5577 rdf:first Ndc4365c899a241ecbe5a98908190a720
    68 rdf:rest Nbd645875dfbb4808ab57828a11661a75
    69 N72a327278a3640ebad9d5d9dd8763847 schema:location Cham
    70 schema:name Springer International Publishing
    71 rdf:type schema:Organisation
    72 N801da4857cb0434d8dfef58a91a97695 rdf:first N4b5f8bc19de4491d89864155ae3d5b6c
    73 rdf:rest N250409f7defd440786770b9d6710642c
    74 N84c3fe14ea4043aa98e93da092666129 schema:name Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science Fudan University Shanghai China
    75 rdf:type schema:Organization
    76 N9a91ad38ddc34decba138b1cc5e9dcda schema:familyName Tie
    77 schema:givenName Yun
    78 rdf:type schema:Person
    79 Nac3a91851b034ba1b5710246b9aa3cc7 rdf:first Nd203cd46f81b4569bcfcd40947624e7a
    80 rdf:rest N4e6c2458333746958db4a86b06c7ea19
    81 Nac3bd11be5a44210ba37e2bf7ee7c2f9 schema:name Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science Fudan University Shanghai China
    82 rdf:type schema:Organization
    83 Naddcc52a08c442cfa4b0e01e9e63af77 schema:name readcube_id
    84 schema:value 1827d20bdfe6a13fcf7fce3636f1516416666753dbfd56e1f2a208aa460d9846
    85 rdf:type schema:PropertyValue
    86 Nbd645875dfbb4808ab57828a11661a75 rdf:first N9a91ad38ddc34decba138b1cc5e9dcda
    87 rdf:rest rdf:nil
    88 Nc6f4c04ec03e4cc3bd00b870f6a06d20 schema:name Springer Nature - SN SciGraph project
    89 rdf:type schema:Organization
    90 Nc8253fbe44e84e6a9620418108257183 rdf:first N0fddce276c0146b5acbd1b68c33a7f0b
    91 rdf:rest N6a520fd4b0cb403089ddd0933c1f5577
    92 Nd203cd46f81b4569bcfcd40947624e7a schema:affiliation N2605f38730784848ac03d6fd11511c02
    93 schema:familyName Yao
    94 schema:givenName Zeping
    95 rdf:type schema:Person
    96 Nd996673091a4463c9dece9abb45e236b schema:name Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science Fudan University Shanghai China
    97 rdf:type schema:Organization
    98 Ndb27f7f89b974f0d80aa1417803f6950 schema:affiliation N3baf346cb5de4067bfcf1f29f8b82f4b
    99 schema:familyName Chen
    100 schema:givenName Lukun
    101 rdf:type schema:Person
    102 Ndc4365c899a241ecbe5a98908190a720 schema:familyName Gong
    103 schema:givenName Yihong
    104 rdf:type schema:Person
    105 Nddee9cb72a2144d4b8af2437e18e2884 schema:name dimensions_id
    106 schema:value pub.1005069860
    107 rdf:type schema:PropertyValue
    108 Nfb26b84e6f5f424e89db19cd9ce9fe52 rdf:first Ndb27f7f89b974f0d80aa1417803f6950
    109 rdf:rest N0617fe36e97d449da4fba56e3634af3f
    110 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Psychology and Cognitive Sciences
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Psychology
    115 rdf:type schema:DefinedTerm
    116 sg:person.010531241272.46 schema:affiliation N0b26118610fe4095902a848b2d86db38
    117 schema:familyName Zhang
    118 schema:givenName Wenqiang
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010531241272.46
    120 rdf:type schema:Person
    121 sg:person.013576203375.62 schema:affiliation Nac3bd11be5a44210ba37e2bf7ee7c2f9
    122 schema:familyName Lu
    123 schema:givenName Hong
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576203375.62
    125 rdf:type schema:Person
    126 sg:person.014723550211.22 schema:affiliation Nd996673091a4463c9dece9abb45e236b
    127 schema:familyName Bai
    128 schema:givenName Yunhan
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014723550211.22
    130 rdf:type schema:Person
    131 sg:person.07565565401.60 schema:affiliation N16ef344b97e547ed828db918af6b37db
    132 schema:familyName Yang
    133 schema:givenName Bohong
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07565565401.60
    135 rdf:type schema:Person
    136 sg:pub.10.1007/978-3-319-13168-9_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016642951
    137 https://doi.org/10.1007/978-3-319-13168-9_36
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1109/cvpr.2011.5995467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093657680
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1109/cvpr.2012.6247954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093738517
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1109/cvpr.2014.414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094493013
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1109/jstsp.2009.2015077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061337861
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1109/tip.2014.2303650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061643868
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1109/tmm.2013.2268051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061698162
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1109/tmm.2013.2269899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061698170
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1111/j.1467-8659.2012.03212.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024754943
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.2307/2346830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101982469
    156 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...