3D Face Alignment in the Wild: A Landmark-Free, Nose-Based Approach View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Flávio H. de Bittencourt Zavan , Antônio C. P. Nascimento , Luan P. e Silva , Olga R. P. Bellon , Luciano Silva

ABSTRACT

We present a methodology for 3D face alignment in the wild, such that only the nose is required as input for assessing the position of the landmarks. Our approach works by first detecting the nose region, which is used for estimating the head pose. After that, a generic face landmark model, obtained by averaging all training images, is rotated, translated and scaled based on the size and localization of the nose. Because little information is needed and there are no refinement steps, our method is able to find suitable landmarks even in challenging poses. While not taking into account facial expressions and specific facial traits, our algorithm achieved competitive scores on the 3D Face Alignment in the Wild (3DFAW) challenge. The obtained results have the potential to be used as rough estimation of the position of the 3D face landmarks in the wild images, which can be further refined by specially designed algorithms. More... »

PAGES

581-589

Book

TITLE

Computer Vision – ECCV 2016 Workshops

ISBN

978-3-319-48880-6
978-3-319-48881-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-48881-3_40

DOI

http://dx.doi.org/10.1007/978-3-319-48881-3_40

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036404020


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Federal University of Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.20736.30", 
          "name": [
            "Departmento de Inform\u00e1tica, Universidade Federal do Paran\u00e1"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Bittencourt Zavan", 
        "givenName": "Fl\u00e1vio H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.20736.30", 
          "name": [
            "Departmento de Inform\u00e1tica, Universidade Federal do Paran\u00e1"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nascimento", 
        "givenName": "Ant\u00f4nio C. P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.20736.30", 
          "name": [
            "Departmento de Inform\u00e1tica, Universidade Federal do Paran\u00e1"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Silva", 
        "givenName": "Luan P. e", 
        "id": "sg:person.011720322077.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011720322077.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.20736.30", 
          "name": [
            "Departmento de Inform\u00e1tica, Universidade Federal do Paran\u00e1"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bellon", 
        "givenName": "Olga R. P.", 
        "id": "sg:person.016130316757.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016130316757.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.20736.30", 
          "name": [
            "Departmento de Inform\u00e1tica, Universidade Federal do Paran\u00e1"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Silva", 
        "givenName": "Luciano", 
        "id": "sg:person.011255035201.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011255035201.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.imavis.2016.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006275968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2929464.2929475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021271865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2816795.2818056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034987495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.imavis.2014.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048070334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/311535.311556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048557873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2014.220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052782426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2016.2518867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061644822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2008.106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2016.2577031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061745117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/afgr.2008.4813324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093178194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2012.6248014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093281279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccvw.2015.58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093376065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/afgr.2008.4813399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094015954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccvw.2015.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094544871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2015.421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095379640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2016.262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095385443"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "We present a methodology for 3D face alignment in the wild, such that only the nose is required as input for assessing the position of the landmarks. Our approach works by first detecting the nose region, which is used for estimating the head pose. After that, a generic face landmark model, obtained by averaging all training images, is rotated, translated and scaled based on the size and localization of the nose. Because little information is needed and there are no refinement steps, our method is able to find suitable landmarks even in challenging poses. While not taking into account facial expressions and specific facial traits, our algorithm achieved competitive scores on the 3D Face Alignment in the Wild (3DFAW) challenge. The obtained results have the potential to be used as rough estimation of the position of the 3D face landmarks in the wild images, which can be further refined by specially designed algorithms.", 
    "editor": [
      {
        "familyName": "Hua", 
        "givenName": "Gang", 
        "type": "Person"
      }, 
      {
        "familyName": "J\u00e9gou", 
        "givenName": "Herv\u00e9", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-48881-3_40", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-48880-6", 
        "978-3-319-48881-3"
      ], 
      "name": "Computer Vision \u2013 ECCV 2016 Workshops", 
      "type": "Book"
    }, 
    "name": "3D Face Alignment in the Wild: A Landmark-Free, Nose-Based Approach", 
    "pagination": "581-589", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-48881-3_40"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ad6a70ddf7a4a15e2e2bc0f0c494a46a55bd45ecb738e0439679537fc592df76"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036404020"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-48881-3_40", 
      "https://app.dimensions.ai/details/publication/pub.1036404020"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000265.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-48881-3_40"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48881-3_40'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48881-3_40'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48881-3_40'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48881-3_40'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      23 PREDICATES      43 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-48881-3_40 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N20a1f252ca5a429c9d020801c0bca324
4 schema:citation https://doi.org/10.1016/j.imavis.2014.06.002
5 https://doi.org/10.1016/j.imavis.2016.01.002
6 https://doi.org/10.1109/afgr.2008.4813324
7 https://doi.org/10.1109/afgr.2008.4813399
8 https://doi.org/10.1109/cvpr.2012.6248014
9 https://doi.org/10.1109/cvpr.2014.220
10 https://doi.org/10.1109/cvpr.2016.262
11 https://doi.org/10.1109/iccv.2015.421
12 https://doi.org/10.1109/iccvw.2015.131
13 https://doi.org/10.1109/iccvw.2015.58
14 https://doi.org/10.1109/tip.2016.2518867
15 https://doi.org/10.1109/tpami.2008.106
16 https://doi.org/10.1109/tpami.2016.2577031
17 https://doi.org/10.1145/2816795.2818056
18 https://doi.org/10.1145/2929464.2929475
19 https://doi.org/10.1145/311535.311556
20 schema:datePublished 2016
21 schema:datePublishedReg 2016-01-01
22 schema:description We present a methodology for 3D face alignment in the wild, such that only the nose is required as input for assessing the position of the landmarks. Our approach works by first detecting the nose region, which is used for estimating the head pose. After that, a generic face landmark model, obtained by averaging all training images, is rotated, translated and scaled based on the size and localization of the nose. Because little information is needed and there are no refinement steps, our method is able to find suitable landmarks even in challenging poses. While not taking into account facial expressions and specific facial traits, our algorithm achieved competitive scores on the 3D Face Alignment in the Wild (3DFAW) challenge. The obtained results have the potential to be used as rough estimation of the position of the 3D face landmarks in the wild images, which can be further refined by specially designed algorithms.
23 schema:editor N90570a23d5c84ce0bd2a2af854048685
24 schema:genre chapter
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf Nf9d837716ea8422fa6ba5f9b22ddeb97
28 schema:name 3D Face Alignment in the Wild: A Landmark-Free, Nose-Based Approach
29 schema:pagination 581-589
30 schema:productId N003b7c0a22e34b2e8263fbff797ff7be
31 Na4d68d2fddd148cf9f8c530b6d339189
32 Na5b0b8d9bd064946993986a50e609c21
33 schema:publisher N4b3af815ea534b3d8e75ac58333a28c4
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036404020
35 https://doi.org/10.1007/978-3-319-48881-3_40
36 schema:sdDatePublished 2019-04-15T17:15
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N87705be38ed84f7da73fa5275aa0a269
39 schema:url http://link.springer.com/10.1007/978-3-319-48881-3_40
40 sgo:license sg:explorer/license/
41 sgo:sdDataset chapters
42 rdf:type schema:Chapter
43 N003b7c0a22e34b2e8263fbff797ff7be schema:name dimensions_id
44 schema:value pub.1036404020
45 rdf:type schema:PropertyValue
46 N20a1f252ca5a429c9d020801c0bca324 rdf:first N93110d2f6f134454a1a152a9300aabb5
47 rdf:rest N8df1c3fb3c1c4bab9d33eaeba20c7f8f
48 N3464b22101bd420d8055312a1a54e214 schema:affiliation https://www.grid.ac/institutes/grid.20736.30
49 schema:familyName Nascimento
50 schema:givenName Antônio C. P.
51 rdf:type schema:Person
52 N45c956d21d264d7ba60d0d88cc7c0a07 schema:familyName Jégou
53 schema:givenName Hervé
54 rdf:type schema:Person
55 N4b3af815ea534b3d8e75ac58333a28c4 schema:location Cham
56 schema:name Springer International Publishing
57 rdf:type schema:Organisation
58 N6e3a40ac50554d7ca71371e5f2a83006 rdf:first sg:person.016130316757.62
59 rdf:rest Ndcd229b464fc4fdb8c460729990d475c
60 N749d2861b9574080bdd9814b70dae240 rdf:first sg:person.011720322077.54
61 rdf:rest N6e3a40ac50554d7ca71371e5f2a83006
62 N87705be38ed84f7da73fa5275aa0a269 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N8df1c3fb3c1c4bab9d33eaeba20c7f8f rdf:first N3464b22101bd420d8055312a1a54e214
65 rdf:rest N749d2861b9574080bdd9814b70dae240
66 N90570a23d5c84ce0bd2a2af854048685 rdf:first Nc93e957732a041cd92f598fba4de1222
67 rdf:rest Nc523af2992ed4f24a7f0139067c7a4ff
68 N93110d2f6f134454a1a152a9300aabb5 schema:affiliation https://www.grid.ac/institutes/grid.20736.30
69 schema:familyName de Bittencourt Zavan
70 schema:givenName Flávio H.
71 rdf:type schema:Person
72 Na4d68d2fddd148cf9f8c530b6d339189 schema:name doi
73 schema:value 10.1007/978-3-319-48881-3_40
74 rdf:type schema:PropertyValue
75 Na5b0b8d9bd064946993986a50e609c21 schema:name readcube_id
76 schema:value ad6a70ddf7a4a15e2e2bc0f0c494a46a55bd45ecb738e0439679537fc592df76
77 rdf:type schema:PropertyValue
78 Nc523af2992ed4f24a7f0139067c7a4ff rdf:first N45c956d21d264d7ba60d0d88cc7c0a07
79 rdf:rest rdf:nil
80 Nc93e957732a041cd92f598fba4de1222 schema:familyName Hua
81 schema:givenName Gang
82 rdf:type schema:Person
83 Ndcd229b464fc4fdb8c460729990d475c rdf:first sg:person.011255035201.31
84 rdf:rest rdf:nil
85 Nf9d837716ea8422fa6ba5f9b22ddeb97 schema:isbn 978-3-319-48880-6
86 978-3-319-48881-3
87 schema:name Computer Vision – ECCV 2016 Workshops
88 rdf:type schema:Book
89 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
90 schema:name Information and Computing Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
93 schema:name Artificial Intelligence and Image Processing
94 rdf:type schema:DefinedTerm
95 sg:person.011255035201.31 schema:affiliation https://www.grid.ac/institutes/grid.20736.30
96 schema:familyName Silva
97 schema:givenName Luciano
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011255035201.31
99 rdf:type schema:Person
100 sg:person.011720322077.54 schema:affiliation https://www.grid.ac/institutes/grid.20736.30
101 schema:familyName Silva
102 schema:givenName Luan P. e
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011720322077.54
104 rdf:type schema:Person
105 sg:person.016130316757.62 schema:affiliation https://www.grid.ac/institutes/grid.20736.30
106 schema:familyName Bellon
107 schema:givenName Olga R. P.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016130316757.62
109 rdf:type schema:Person
110 https://doi.org/10.1016/j.imavis.2014.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048070334
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.imavis.2016.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006275968
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/afgr.2008.4813324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093178194
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/afgr.2008.4813399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094015954
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/cvpr.2012.6248014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093281279
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/cvpr.2014.220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052782426
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/cvpr.2016.262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095385443
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/iccv.2015.421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095379640
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/iccvw.2015.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094544871
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/iccvw.2015.58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093376065
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/tip.2016.2518867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061644822
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/tpami.2008.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743468
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/tpami.2016.2577031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061745117
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1145/2816795.2818056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034987495
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1145/2929464.2929475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021271865
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1145/311535.311556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048557873
141 rdf:type schema:CreativeWork
142 https://www.grid.ac/institutes/grid.20736.30 schema:alternateName Federal University of Paraná
143 schema:name Departmento de Informática, Universidade Federal do Paraná
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...