ExRORU: A New Approach to Characterize the Behavioral Semantics of Process Models (Short Paper) View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-10-18

AUTHORS

Shuhao Wang , Lijie Wen , Akhil Kumar , Jianmin Wang , Jianwen Su

ABSTRACT

A recent paper has proposed new ordering relations with uncertainty between the executions of tasks in acyclic process models. However, this approach cannot work for cyclic process models and those with silent transitions and non-free-choice constructs. In practice most non-trivial process models contain cycles and about 10 % to 20 % have also non-free-choice constructs. In this paper, we show how to overcome these problems by a refinement of the relations (i.e., extended refined ordering relations with uncertainty, ExRORU for short). All these relations can uniquely detect the behavioral differences between any pair of process models and can also be computed efficiently based on the complete prefix unfolding of a process model. Experiments on real-life and synthesized process models show that ExRORU is both effective and scalable. More... »

PAGES

318-326

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-48472-3_18

DOI

http://dx.doi.org/10.1007/978-3-319-48472-3_18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010366712


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Shuhao", 
        "id": "sg:person.012631636604.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012631636604.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wen", 
        "givenName": "Lijie", 
        "id": "sg:person.013640554311.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640554311.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Smeal College of Business, Penn State University, 16802, State College, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Smeal College of Business, Penn State University, 16802, State College, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "Akhil", 
        "id": "sg:person.014767210171.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014767210171.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jianmin", 
        "id": "sg:person.012303351315.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, UC Santa Barbara, Santa Barbara, USA", 
          "id": "http://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Department of Computer Science, UC Santa Barbara, Santa Barbara, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Su", 
        "givenName": "Jianwen", 
        "id": "sg:person.010127073443.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010127073443.60"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-10-18", 
    "datePublishedReg": "2016-10-18", 
    "description": "A recent paper has proposed new ordering relations with uncertainty between the executions of tasks in acyclic process models. However, this approach cannot work for cyclic process models and those with silent transitions and non-free-choice constructs. In practice most non-trivial process models contain cycles and about 10\u00a0% to 20\u00a0% have also non-free-choice constructs. In this paper, we show how to overcome these problems by a refinement of the relations (i.e., extended refined ordering relations with uncertainty, ExRORU for short). All these relations can uniquely detect the behavioral differences between any pair of process models and can also be computed efficiently based on the complete prefix unfolding of a process model. Experiments on real-life and synthesized process models show that ExRORU is both effective and scalable.", 
    "editor": [
      {
        "familyName": "Debruyne", 
        "givenName": "Christophe", 
        "type": "Person"
      }, 
      {
        "familyName": "Panetto", 
        "givenName": "Herv\u00e9", 
        "type": "Person"
      }, 
      {
        "familyName": "Meersman", 
        "givenName": "Robert", 
        "type": "Person"
      }, 
      {
        "familyName": "Dillon", 
        "givenName": "Tharam", 
        "type": "Person"
      }, 
      {
        "familyName": "K\u00fchn", 
        "givenName": "eva", 
        "type": "Person"
      }, 
      {
        "familyName": "O'Sullivan", 
        "givenName": "Declan", 
        "type": "Person"
      }, 
      {
        "familyName": "Ardagna", 
        "givenName": "Claudio Agostino", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-48472-3_18", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-48471-6", 
        "978-3-319-48472-3"
      ], 
      "name": "On the Move to Meaningful Internet Systems: OTM 2016 Conferences", 
      "type": "Book"
    }, 
    "keywords": [
      "process model", 
      "Cyclic Process Model", 
      "execution of tasks", 
      "constructs", 
      "behavioral differences", 
      "paper", 
      "relation", 
      "model", 
      "practice", 
      "task", 
      "acyclic process models", 
      "approach", 
      "uncertainty", 
      "execution", 
      "new approach", 
      "recent paper", 
      "cycle", 
      "refinement", 
      "differences", 
      "experiments", 
      "semantics", 
      "transition", 
      "problem", 
      "behavioral semantics", 
      "ordering relations", 
      "silent transitions", 
      "pairs", 
      "unfolding", 
      "new ordering relation", 
      "choice construct", 
      "non-trivial process models", 
      "complete prefix unfolding", 
      "prefix unfolding", 
      "synthesized process models", 
      "ExRORU"
    ], 
    "name": "ExRORU: A New Approach to Characterize the Behavioral Semantics of Process Models (Short Paper)", 
    "pagination": "318-326", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010366712"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-48472-3_18"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-48472-3_18", 
      "https://app.dimensions.ai/details/publication/pub.1010366712"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_391.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-48472-3_18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48472-3_18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48472-3_18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48472-3_18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48472-3_18'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      23 PREDICATES      60 URIs      53 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-48472-3_18 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Nd2eabace3e2e4c9181536008fb12288d
4 schema:datePublished 2016-10-18
5 schema:datePublishedReg 2016-10-18
6 schema:description A recent paper has proposed new ordering relations with uncertainty between the executions of tasks in acyclic process models. However, this approach cannot work for cyclic process models and those with silent transitions and non-free-choice constructs. In practice most non-trivial process models contain cycles and about 10 % to 20 % have also non-free-choice constructs. In this paper, we show how to overcome these problems by a refinement of the relations (i.e., extended refined ordering relations with uncertainty, ExRORU for short). All these relations can uniquely detect the behavioral differences between any pair of process models and can also be computed efficiently based on the complete prefix unfolding of a process model. Experiments on real-life and synthesized process models show that ExRORU is both effective and scalable.
7 schema:editor N37ebda3732eb40199562c09e8ce0da04
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ndd98b9f91cb642b183d48864f2721add
12 schema:keywords Cyclic Process Model
13 ExRORU
14 acyclic process models
15 approach
16 behavioral differences
17 behavioral semantics
18 choice construct
19 complete prefix unfolding
20 constructs
21 cycle
22 differences
23 execution
24 execution of tasks
25 experiments
26 model
27 new approach
28 new ordering relation
29 non-trivial process models
30 ordering relations
31 pairs
32 paper
33 practice
34 prefix unfolding
35 problem
36 process model
37 recent paper
38 refinement
39 relation
40 semantics
41 silent transitions
42 synthesized process models
43 task
44 transition
45 uncertainty
46 unfolding
47 schema:name ExRORU: A New Approach to Characterize the Behavioral Semantics of Process Models (Short Paper)
48 schema:pagination 318-326
49 schema:productId N260438001552478c818e0d73a7e5e6fa
50 N6c7b89a5836c4de0ad1ff575433e9750
51 schema:publisher Ne710c45b957c43f2a719a3c8f313966a
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010366712
53 https://doi.org/10.1007/978-3-319-48472-3_18
54 schema:sdDatePublished 2022-01-01T19:22
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Neb98fdc3c5924397959b26bcdf88e82a
57 schema:url https://doi.org/10.1007/978-3-319-48472-3_18
58 sgo:license sg:explorer/license/
59 sgo:sdDataset chapters
60 rdf:type schema:Chapter
61 N0382289f315c4ccc913a59d57a637f32 rdf:first N65ddcb6ca8c04cb6af67be4a9b2bbe56
62 rdf:rest rdf:nil
63 N2446b03b22a74780a83f85c505c201f0 rdf:first N7b4e1eb5e1e341f2ab6c8843208224ba
64 rdf:rest N44346c533b134f78b9c89c0744d7efc6
65 N260438001552478c818e0d73a7e5e6fa schema:name doi
66 schema:value 10.1007/978-3-319-48472-3_18
67 rdf:type schema:PropertyValue
68 N37ebda3732eb40199562c09e8ce0da04 rdf:first Ndf70e49c8cee4e439c1d5d19816fec62
69 rdf:rest Nf2edd4ade197495e921a4ca3c2afd672
70 N44346c533b134f78b9c89c0744d7efc6 rdf:first Ne429c53d3c2c44c7b918b327a756226a
71 rdf:rest Nfc86493f9a504872a24e22276312a465
72 N4913158be06541109a65b407062e7183 rdf:first sg:person.010127073443.60
73 rdf:rest rdf:nil
74 N591c5dea677149b8b827d0cbe24ac296 rdf:first sg:person.012303351315.43
75 rdf:rest N4913158be06541109a65b407062e7183
76 N609606df621b44e593010b5d67c5b361 rdf:first N82a424ff875f4db38e78b99e1204d508
77 rdf:rest N2446b03b22a74780a83f85c505c201f0
78 N6590b83b37c54968b42c3f6ae879db89 rdf:first sg:person.013640554311.55
79 rdf:rest Nfa4b93e325704731be53a6fd944257dd
80 N65ddcb6ca8c04cb6af67be4a9b2bbe56 schema:familyName Ardagna
81 schema:givenName Claudio Agostino
82 rdf:type schema:Person
83 N6c7b89a5836c4de0ad1ff575433e9750 schema:name dimensions_id
84 schema:value pub.1010366712
85 rdf:type schema:PropertyValue
86 N7b4e1eb5e1e341f2ab6c8843208224ba schema:familyName Dillon
87 schema:givenName Tharam
88 rdf:type schema:Person
89 N82a424ff875f4db38e78b99e1204d508 schema:familyName Meersman
90 schema:givenName Robert
91 rdf:type schema:Person
92 Naf67836d51fc4ab08568cb226e5546ba schema:familyName O'Sullivan
93 schema:givenName Declan
94 rdf:type schema:Person
95 Nd2eabace3e2e4c9181536008fb12288d rdf:first sg:person.012631636604.93
96 rdf:rest N6590b83b37c54968b42c3f6ae879db89
97 Ndd98b9f91cb642b183d48864f2721add schema:isbn 978-3-319-48471-6
98 978-3-319-48472-3
99 schema:name On the Move to Meaningful Internet Systems: OTM 2016 Conferences
100 rdf:type schema:Book
101 Ndf70e49c8cee4e439c1d5d19816fec62 schema:familyName Debruyne
102 schema:givenName Christophe
103 rdf:type schema:Person
104 Ne429c53d3c2c44c7b918b327a756226a schema:familyName Kühn
105 schema:givenName eva
106 rdf:type schema:Person
107 Ne710c45b957c43f2a719a3c8f313966a schema:name Springer Nature
108 rdf:type schema:Organisation
109 Neb98fdc3c5924397959b26bcdf88e82a schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Nf2edd4ade197495e921a4ca3c2afd672 rdf:first Nfe7b3229dfe34d34a1ad552a3e4bd4d7
112 rdf:rest N609606df621b44e593010b5d67c5b361
113 Nfa4b93e325704731be53a6fd944257dd rdf:first sg:person.014767210171.82
114 rdf:rest N591c5dea677149b8b827d0cbe24ac296
115 Nfc86493f9a504872a24e22276312a465 rdf:first Naf67836d51fc4ab08568cb226e5546ba
116 rdf:rest N0382289f315c4ccc913a59d57a637f32
117 Nfe7b3229dfe34d34a1ad552a3e4bd4d7 schema:familyName Panetto
118 schema:givenName Hervé
119 rdf:type schema:Person
120 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
121 schema:name Psychology and Cognitive Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
124 schema:name Psychology
125 rdf:type schema:DefinedTerm
126 sg:person.010127073443.60 schema:affiliation grid-institutes:grid.133342.4
127 schema:familyName Su
128 schema:givenName Jianwen
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010127073443.60
130 rdf:type schema:Person
131 sg:person.012303351315.43 schema:affiliation grid-institutes:grid.12527.33
132 schema:familyName Wang
133 schema:givenName Jianmin
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43
135 rdf:type schema:Person
136 sg:person.012631636604.93 schema:affiliation grid-institutes:grid.12527.33
137 schema:familyName Wang
138 schema:givenName Shuhao
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012631636604.93
140 rdf:type schema:Person
141 sg:person.013640554311.55 schema:affiliation grid-institutes:grid.12527.33
142 schema:familyName Wen
143 schema:givenName Lijie
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640554311.55
145 rdf:type schema:Person
146 sg:person.014767210171.82 schema:affiliation grid-institutes:grid.29857.31
147 schema:familyName Kumar
148 schema:givenName Akhil
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014767210171.82
150 rdf:type schema:Person
151 grid-institutes:grid.12527.33 schema:alternateName School of Software, Tsinghua University, 100084, Beijing, People’s Republic of China
152 schema:name School of Software, Tsinghua University, 100084, Beijing, People’s Republic of China
153 rdf:type schema:Organization
154 grid-institutes:grid.133342.4 schema:alternateName Department of Computer Science, UC Santa Barbara, Santa Barbara, USA
155 schema:name Department of Computer Science, UC Santa Barbara, Santa Barbara, USA
156 rdf:type schema:Organization
157 grid-institutes:grid.29857.31 schema:alternateName Smeal College of Business, Penn State University, 16802, State College, PA, USA
158 schema:name Smeal College of Business, Penn State University, 16802, State College, PA, USA
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...