Quasi-Static, Fatigue and Fracture Behavior of Aluminum Alloy Composite Used in Brake Drums View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

K. Manigandan , T. S. Srivatsan , T. Quick

ABSTRACT

In this paper the results of a study aimed at investigating and understanding the quasi-static, cyclic fatigue properties and final fracture behavior of an aluminum alloy reinforced with particulates of ceramic, a viable candidate for use in brake drums of emerging automobiles, is highlighted. The processing treatment used to engineer the aluminum alloy composite is detailed. Specimens of both the aluminum composite and the preform that was used to engineer the composite were deformed in both tension and cyclic fatigue over a range of maximum stress in the room temperature, laboratory air environment and the number of cycles-to-failure was recorded. The stress-fatigue life response of the aluminum alloy composite is compared with the preform. Both the quasi-static and cyclic fatigue fracture surfaces of the deformed and failed samples were comprehensively examined in a scanning electron microscope to reveal the macroscopic fracture mode and to concurrently characterize the intrinsic features on the fracture surfaces. More... »

PAGES

55-76

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-48240-8_5

DOI

http://dx.doi.org/10.1007/978-3-319-48240-8_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027015760


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manigandan", 
        "givenName": "K.", 
        "id": "sg:person.010412562231.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412562231.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srivatsan", 
        "givenName": "T. S.", 
        "id": "sg:person.015440524245.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Geology, The University of Akron, 44325, Akron, Ohio, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Geology, The University of Akron, 44325, Akron, Ohio, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quick", 
        "givenName": "T.", 
        "id": "sg:person.016647363633.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016647363633.11"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "In this paper the results of a study aimed at investigating and understanding the quasi-static, cyclic fatigue properties and final fracture behavior of an aluminum alloy reinforced with particulates of ceramic, a viable candidate for use in brake drums of emerging automobiles, is highlighted. The processing treatment used to engineer the aluminum alloy composite is detailed. Specimens of both the aluminum composite and the preform that was used to engineer the composite were deformed in both tension and cyclic fatigue over a range of maximum stress in the room temperature, laboratory air environment and the number of cycles-to-failure was recorded. The stress-fatigue life response of the aluminum alloy composite is compared with the preform. Both the quasi-static and cyclic fatigue fracture surfaces of the deformed and failed samples were comprehensively examined in a scanning electron microscope to reveal the macroscopic fracture mode and to concurrently characterize the intrinsic features on the fracture surfaces.", 
    "editor": [
      {
        "familyName": "Srivatsan", 
        "givenName": "T. S.", 
        "type": "Person"
      }, 
      {
        "familyName": "Imam", 
        "givenName": "M. Ashraf", 
        "type": "Person"
      }, 
      {
        "familyName": "Srinivasan", 
        "givenName": "R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-48240-8_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-48597-3", 
        "978-3-319-48240-8"
      ], 
      "name": "Fatigue of Materials III", 
      "type": "Book"
    }, 
    "keywords": [
      "aluminum alloy composites", 
      "alloy composites", 
      "fracture behavior", 
      "fracture surfaces", 
      "brake drum", 
      "final fracture behavior", 
      "macroscopic fracture mode", 
      "fatigue fracture surfaces", 
      "cyclic fatigue properties", 
      "laboratory air environment", 
      "aluminum composites", 
      "fatigue properties", 
      "aluminum alloy", 
      "scanning electron microscope", 
      "fracture mode", 
      "number of cycles", 
      "maximum stress", 
      "cyclic fatigue", 
      "composites", 
      "air environment", 
      "preforms", 
      "electron microscope", 
      "processing treatments", 
      "room temperature", 
      "viable candidate", 
      "drum", 
      "surface", 
      "alloy", 
      "life responses", 
      "fatigue", 
      "automobiles", 
      "particulates", 
      "behavior", 
      "temperature", 
      "microscope", 
      "properties", 
      "intrinsic features", 
      "stress", 
      "tension", 
      "specimens", 
      "mode", 
      "range", 
      "cycle", 
      "results", 
      "environment", 
      "failure", 
      "candidates", 
      "use", 
      "features", 
      "samples", 
      "number", 
      "study", 
      "response", 
      "treatment", 
      "paper", 
      "stress-fatigue life response", 
      "cyclic fatigue fracture surfaces"
    ], 
    "name": "Quasi-Static, Fatigue and Fracture Behavior of Aluminum Alloy Composite Used in Brake Drums", 
    "pagination": "55-76", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027015760"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-48240-8_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-48240-8_5", 
      "https://app.dimensions.ai/details/publication/pub.1027015760"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_245.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-48240-8_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48240-8_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48240-8_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48240-8_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48240-8_5'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      23 PREDICATES      83 URIs      76 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-48240-8_5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N03fb8b07be6240e4b7799e6e45db1194
4 schema:datePublished 2014
5 schema:datePublishedReg 2014-01-01
6 schema:description In this paper the results of a study aimed at investigating and understanding the quasi-static, cyclic fatigue properties and final fracture behavior of an aluminum alloy reinforced with particulates of ceramic, a viable candidate for use in brake drums of emerging automobiles, is highlighted. The processing treatment used to engineer the aluminum alloy composite is detailed. Specimens of both the aluminum composite and the preform that was used to engineer the composite were deformed in both tension and cyclic fatigue over a range of maximum stress in the room temperature, laboratory air environment and the number of cycles-to-failure was recorded. The stress-fatigue life response of the aluminum alloy composite is compared with the preform. Both the quasi-static and cyclic fatigue fracture surfaces of the deformed and failed samples were comprehensively examined in a scanning electron microscope to reveal the macroscopic fracture mode and to concurrently characterize the intrinsic features on the fracture surfaces.
7 schema:editor Nb8d773eac4d6481b92ee7b22dff3bd6c
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N13cd5eb692964192bd4b10fb1ab27196
12 schema:keywords air environment
13 alloy
14 alloy composites
15 aluminum alloy
16 aluminum alloy composites
17 aluminum composites
18 automobiles
19 behavior
20 brake drum
21 candidates
22 composites
23 cycle
24 cyclic fatigue
25 cyclic fatigue fracture surfaces
26 cyclic fatigue properties
27 drum
28 electron microscope
29 environment
30 failure
31 fatigue
32 fatigue fracture surfaces
33 fatigue properties
34 features
35 final fracture behavior
36 fracture behavior
37 fracture mode
38 fracture surfaces
39 intrinsic features
40 laboratory air environment
41 life responses
42 macroscopic fracture mode
43 maximum stress
44 microscope
45 mode
46 number
47 number of cycles
48 paper
49 particulates
50 preforms
51 processing treatments
52 properties
53 range
54 response
55 results
56 room temperature
57 samples
58 scanning electron microscope
59 specimens
60 stress
61 stress-fatigue life response
62 study
63 surface
64 temperature
65 tension
66 treatment
67 use
68 viable candidate
69 schema:name Quasi-Static, Fatigue and Fracture Behavior of Aluminum Alloy Composite Used in Brake Drums
70 schema:pagination 55-76
71 schema:productId N474c9b280cea4b72a472ad31c2826df1
72 Na27499a33a0b4ff6954238b67c9a4fb1
73 schema:publisher Nf7ca09d1dad74794b2198ad814dde67f
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027015760
75 https://doi.org/10.1007/978-3-319-48240-8_5
76 schema:sdDatePublished 2022-01-01T19:14
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N0aa25007583047d1bd5dc883c10ad610
79 schema:url https://doi.org/10.1007/978-3-319-48240-8_5
80 sgo:license sg:explorer/license/
81 sgo:sdDataset chapters
82 rdf:type schema:Chapter
83 N03fb8b07be6240e4b7799e6e45db1194 rdf:first sg:person.010412562231.72
84 rdf:rest N5d45887b390143cc904db722dbb86a54
85 N0aa25007583047d1bd5dc883c10ad610 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N13cd5eb692964192bd4b10fb1ab27196 schema:isbn 978-3-319-48240-8
88 978-3-319-48597-3
89 schema:name Fatigue of Materials III
90 rdf:type schema:Book
91 N21965eaefe4b45e8acc4703c35a6a001 rdf:first Nd5b8884ded94449c8b33e044e2831eb1
92 rdf:rest rdf:nil
93 N39100b869fc34ef791f647adf64f8a80 rdf:first Na8230d9fafac4d32b99113582a05943c
94 rdf:rest N21965eaefe4b45e8acc4703c35a6a001
95 N474c9b280cea4b72a472ad31c2826df1 schema:name dimensions_id
96 schema:value pub.1027015760
97 rdf:type schema:PropertyValue
98 N5d45887b390143cc904db722dbb86a54 rdf:first sg:person.015440524245.80
99 rdf:rest Na6915a1fe1534165bb80714de4477480
100 N632ba09ae93e43509543105ab03a3f58 schema:familyName Srivatsan
101 schema:givenName T. S.
102 rdf:type schema:Person
103 Na27499a33a0b4ff6954238b67c9a4fb1 schema:name doi
104 schema:value 10.1007/978-3-319-48240-8_5
105 rdf:type schema:PropertyValue
106 Na6915a1fe1534165bb80714de4477480 rdf:first sg:person.016647363633.11
107 rdf:rest rdf:nil
108 Na8230d9fafac4d32b99113582a05943c schema:familyName Imam
109 schema:givenName M. Ashraf
110 rdf:type schema:Person
111 Nb8d773eac4d6481b92ee7b22dff3bd6c rdf:first N632ba09ae93e43509543105ab03a3f58
112 rdf:rest N39100b869fc34ef791f647adf64f8a80
113 Nd5b8884ded94449c8b33e044e2831eb1 schema:familyName Srinivasan
114 schema:givenName R.
115 rdf:type schema:Person
116 Nf7ca09d1dad74794b2198ad814dde67f schema:name Springer Nature
117 rdf:type schema:Organisation
118 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
119 schema:name Engineering
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
122 schema:name Materials Engineering
123 rdf:type schema:DefinedTerm
124 sg:person.010412562231.72 schema:affiliation grid-institutes:grid.265881.0
125 schema:familyName Manigandan
126 schema:givenName K.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412562231.72
128 rdf:type schema:Person
129 sg:person.015440524245.80 schema:affiliation grid-institutes:grid.265881.0
130 schema:familyName Srivatsan
131 schema:givenName T. S.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80
133 rdf:type schema:Person
134 sg:person.016647363633.11 schema:affiliation grid-institutes:grid.265881.0
135 schema:familyName Quick
136 schema:givenName T.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016647363633.11
138 rdf:type schema:Person
139 grid-institutes:grid.265881.0 schema:alternateName Department of Geology, The University of Akron, 44325, Akron, Ohio, USA
140 Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA
141 schema:name Department of Geology, The University of Akron, 44325, Akron, Ohio, USA
142 Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...