Quasi-Static, Fatigue and Fracture Behavior of Aluminum Alloy Composite Used in Brake Drums View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

K. Manigandan , T. S. Srivatsan , T. Quick

ABSTRACT

In this paper the results of a study aimed at investigating and understanding the quasi-static, cyclic fatigue properties and final fracture behavior of an aluminum alloy reinforced with particulates of ceramic, a viable candidate for use in brake drums of emerging automobiles, is highlighted. The processing treatment used to engineer the aluminum alloy composite is detailed. Specimens of both the aluminum composite and the preform that was used to engineer the composite were deformed in both tension and cyclic fatigue over a range of maximum stress in the room temperature, laboratory air environment and the number of cycles-to-failure was recorded. The stress-fatigue life response of the aluminum alloy composite is compared with the preform. Both the quasi-static and cyclic fatigue fracture surfaces of the deformed and failed samples were comprehensively examined in a scanning electron microscope to reveal the macroscopic fracture mode and to concurrently characterize the intrinsic features on the fracture surfaces. More... »

PAGES

55-76

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-48240-8_5

DOI

http://dx.doi.org/10.1007/978-3-319-48240-8_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027015760


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manigandan", 
        "givenName": "K.", 
        "id": "sg:person.010412562231.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412562231.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srivatsan", 
        "givenName": "T. S.", 
        "id": "sg:person.015440524245.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Geology, The University of Akron, 44325, Akron, Ohio, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Geology, The University of Akron, 44325, Akron, Ohio, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quick", 
        "givenName": "T.", 
        "id": "sg:person.016647363633.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016647363633.11"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "In this paper the results of a study aimed at investigating and understanding the quasi-static, cyclic fatigue properties and final fracture behavior of an aluminum alloy reinforced with particulates of ceramic, a viable candidate for use in brake drums of emerging automobiles, is highlighted. The processing treatment used to engineer the aluminum alloy composite is detailed. Specimens of both the aluminum composite and the preform that was used to engineer the composite were deformed in both tension and cyclic fatigue over a range of maximum stress in the room temperature, laboratory air environment and the number of cycles-to-failure was recorded. The stress-fatigue life response of the aluminum alloy composite is compared with the preform. Both the quasi-static and cyclic fatigue fracture surfaces of the deformed and failed samples were comprehensively examined in a scanning electron microscope to reveal the macroscopic fracture mode and to concurrently characterize the intrinsic features on the fracture surfaces.", 
    "editor": [
      {
        "familyName": "Srivatsan", 
        "givenName": "T. S.", 
        "type": "Person"
      }, 
      {
        "familyName": "Imam", 
        "givenName": "M. Ashraf", 
        "type": "Person"
      }, 
      {
        "familyName": "Srinivasan", 
        "givenName": "R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-48240-8_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-48597-3", 
        "978-3-319-48240-8"
      ], 
      "name": "Fatigue of Materials III", 
      "type": "Book"
    }, 
    "keywords": [
      "aluminum alloy composites", 
      "alloy composites", 
      "fracture behavior", 
      "fracture surfaces", 
      "brake drum", 
      "final fracture behavior", 
      "macroscopic fracture mode", 
      "fatigue fracture surfaces", 
      "cyclic fatigue properties", 
      "laboratory air environment", 
      "aluminum composites", 
      "fatigue properties", 
      "aluminum alloy", 
      "scanning electron microscope", 
      "fracture mode", 
      "number of cycles", 
      "maximum stress", 
      "cyclic fatigue", 
      "composites", 
      "air environment", 
      "preforms", 
      "electron microscope", 
      "processing treatments", 
      "room temperature", 
      "viable candidate", 
      "drum", 
      "surface", 
      "alloy", 
      "life responses", 
      "fatigue", 
      "automobiles", 
      "particulates", 
      "behavior", 
      "temperature", 
      "microscope", 
      "properties", 
      "intrinsic features", 
      "stress", 
      "tension", 
      "specimens", 
      "mode", 
      "range", 
      "cycle", 
      "results", 
      "environment", 
      "failure", 
      "candidates", 
      "use", 
      "features", 
      "samples", 
      "number", 
      "study", 
      "response", 
      "treatment", 
      "paper", 
      "stress-fatigue life response", 
      "cyclic fatigue fracture surfaces"
    ], 
    "name": "Quasi-Static, Fatigue and Fracture Behavior of Aluminum Alloy Composite Used in Brake Drums", 
    "pagination": "55-76", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027015760"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-48240-8_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-48240-8_5", 
      "https://app.dimensions.ai/details/publication/pub.1027015760"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_202.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-48240-8_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48240-8_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48240-8_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48240-8_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48240-8_5'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      23 PREDICATES      83 URIs      76 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-48240-8_5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc8dc15346c5d4d9fb956315dba9eebf4
4 schema:datePublished 2014
5 schema:datePublishedReg 2014-01-01
6 schema:description In this paper the results of a study aimed at investigating and understanding the quasi-static, cyclic fatigue properties and final fracture behavior of an aluminum alloy reinforced with particulates of ceramic, a viable candidate for use in brake drums of emerging automobiles, is highlighted. The processing treatment used to engineer the aluminum alloy composite is detailed. Specimens of both the aluminum composite and the preform that was used to engineer the composite were deformed in both tension and cyclic fatigue over a range of maximum stress in the room temperature, laboratory air environment and the number of cycles-to-failure was recorded. The stress-fatigue life response of the aluminum alloy composite is compared with the preform. Both the quasi-static and cyclic fatigue fracture surfaces of the deformed and failed samples were comprehensively examined in a scanning electron microscope to reveal the macroscopic fracture mode and to concurrently characterize the intrinsic features on the fracture surfaces.
7 schema:editor N3c107ba9cf8a4359bd0e9320a18c580e
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N8ec02b7bee514df3bf9666f6114a280f
12 schema:keywords air environment
13 alloy
14 alloy composites
15 aluminum alloy
16 aluminum alloy composites
17 aluminum composites
18 automobiles
19 behavior
20 brake drum
21 candidates
22 composites
23 cycle
24 cyclic fatigue
25 cyclic fatigue fracture surfaces
26 cyclic fatigue properties
27 drum
28 electron microscope
29 environment
30 failure
31 fatigue
32 fatigue fracture surfaces
33 fatigue properties
34 features
35 final fracture behavior
36 fracture behavior
37 fracture mode
38 fracture surfaces
39 intrinsic features
40 laboratory air environment
41 life responses
42 macroscopic fracture mode
43 maximum stress
44 microscope
45 mode
46 number
47 number of cycles
48 paper
49 particulates
50 preforms
51 processing treatments
52 properties
53 range
54 response
55 results
56 room temperature
57 samples
58 scanning electron microscope
59 specimens
60 stress
61 stress-fatigue life response
62 study
63 surface
64 temperature
65 tension
66 treatment
67 use
68 viable candidate
69 schema:name Quasi-Static, Fatigue and Fracture Behavior of Aluminum Alloy Composite Used in Brake Drums
70 schema:pagination 55-76
71 schema:productId N2cf24966e79d47d689e58bc81135c3d5
72 N820774d28271487d917c68f755de6bf7
73 schema:publisher N68c097c4a25a4bc892b752e449c9a17c
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027015760
75 https://doi.org/10.1007/978-3-319-48240-8_5
76 schema:sdDatePublished 2021-11-01T18:50
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N3e4f012c5fae4eaa818e46023bc7ca81
79 schema:url https://doi.org/10.1007/978-3-319-48240-8_5
80 sgo:license sg:explorer/license/
81 sgo:sdDataset chapters
82 rdf:type schema:Chapter
83 N1058d0f001e34678a93311b6a69ad197 rdf:first Nceda5f7d89df4fc49522b44a377b2041
84 rdf:rest rdf:nil
85 N2cf24966e79d47d689e58bc81135c3d5 schema:name dimensions_id
86 schema:value pub.1027015760
87 rdf:type schema:PropertyValue
88 N3c107ba9cf8a4359bd0e9320a18c580e rdf:first N817223de24b047ee9b33b65aab46c318
89 rdf:rest Neb23822b07894f669ac790d59427b136
90 N3e4f012c5fae4eaa818e46023bc7ca81 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N68c097c4a25a4bc892b752e449c9a17c schema:name Springer Nature
93 rdf:type schema:Organisation
94 N817223de24b047ee9b33b65aab46c318 schema:familyName Srivatsan
95 schema:givenName T. S.
96 rdf:type schema:Person
97 N820774d28271487d917c68f755de6bf7 schema:name doi
98 schema:value 10.1007/978-3-319-48240-8_5
99 rdf:type schema:PropertyValue
100 N8ec02b7bee514df3bf9666f6114a280f schema:isbn 978-3-319-48240-8
101 978-3-319-48597-3
102 schema:name Fatigue of Materials III
103 rdf:type schema:Book
104 Nc8cae7dd70c0403aa1eaad1d7ff31886 rdf:first sg:person.015440524245.80
105 rdf:rest Ne0a235c81c884a169336e94306a23892
106 Nc8dc15346c5d4d9fb956315dba9eebf4 rdf:first sg:person.010412562231.72
107 rdf:rest Nc8cae7dd70c0403aa1eaad1d7ff31886
108 Nceda5f7d89df4fc49522b44a377b2041 schema:familyName Srinivasan
109 schema:givenName R.
110 rdf:type schema:Person
111 Ne0a235c81c884a169336e94306a23892 rdf:first sg:person.016647363633.11
112 rdf:rest rdf:nil
113 Neb23822b07894f669ac790d59427b136 rdf:first Nfe6707f70c3c4214b7b253253c54ea4d
114 rdf:rest N1058d0f001e34678a93311b6a69ad197
115 Nfe6707f70c3c4214b7b253253c54ea4d schema:familyName Imam
116 schema:givenName M. Ashraf
117 rdf:type schema:Person
118 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
119 schema:name Engineering
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
122 schema:name Materials Engineering
123 rdf:type schema:DefinedTerm
124 sg:person.010412562231.72 schema:affiliation grid-institutes:grid.265881.0
125 schema:familyName Manigandan
126 schema:givenName K.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412562231.72
128 rdf:type schema:Person
129 sg:person.015440524245.80 schema:affiliation grid-institutes:grid.265881.0
130 schema:familyName Srivatsan
131 schema:givenName T. S.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80
133 rdf:type schema:Person
134 sg:person.016647363633.11 schema:affiliation grid-institutes:grid.265881.0
135 schema:familyName Quick
136 schema:givenName T.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016647363633.11
138 rdf:type schema:Person
139 grid-institutes:grid.265881.0 schema:alternateName Department of Geology, The University of Akron, 44325, Akron, Ohio, USA
140 Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA
141 schema:name Department of Geology, The University of Akron, 44325, Akron, Ohio, USA
142 Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...