The Stress Controlled Cyclic Fatigue and Fracture Behavior of Alloy Steel 300M View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

K. Manigandan , T. S. Srivatsan , G. Doll , T. Quick

ABSTRACT

In this manuscript the results of a study aimed at understanding the extrinsic influence of test specimen orientation, with respect to wrought alloy steel plate, on high cycle fatigue properties and fracture behavior is highlighted. The alloy steel chosen was 300 M. Samples of this alloy steel prepared from both the longitudinal and transverse orientation were cyclically deformed over a range of maximum stress and the corresponding number of cycles to failure (NF) was recorded. The influence of test specimen orientation and intrinsic microstructural effects on cyclic fatigue life is presented. At the chosen test temperature, the macroscopic fracture mode was essentially identical regardless of the orientation of the test specimen with respect to the wrought plate. The microscopic mechanisms governing cyclic deformation, fatigue life and final fracture behavior is presented in light of the mutually interactive influences of magnitude of applied stress, intrinsic microstructural effects, orientation of test specimen, and deformation characteristics of the constituents in the microstructure of this alloy steel. More... »

PAGES

185-203

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-48240-8_13

DOI

http://dx.doi.org/10.1007/978-3-319-48240-8_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027469015


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manigandan", 
        "givenName": "K.", 
        "id": "sg:person.010412562231.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412562231.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srivatsan", 
        "givenName": "T. S.", 
        "id": "sg:person.015440524245.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Timken Engineered Surfaces Laboratories, Akron Engineering Research Center, The University of Akron, 44325-0406, Akron, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Timken Engineered Surfaces Laboratories, Akron Engineering Research Center, The University of Akron, 44325-0406, Akron, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doll", 
        "givenName": "G.", 
        "id": "sg:person.015743473257.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015743473257.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Geology, The University of Akron, 44325-3903, Akron, Ohio, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Geology, The University of Akron, 44325-3903, Akron, Ohio, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quick", 
        "givenName": "T.", 
        "id": "sg:person.016647363633.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016647363633.11"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "In this manuscript the results of a study aimed at understanding the extrinsic influence of test specimen orientation, with respect to wrought alloy steel plate, on high cycle fatigue properties and fracture behavior is highlighted. The alloy steel chosen was 300 M. Samples of this alloy steel prepared from both the longitudinal and transverse orientation were cyclically deformed over a range of maximum stress and the corresponding number of cycles to failure (NF) was recorded. The influence of test specimen orientation and intrinsic microstructural effects on cyclic fatigue life is presented. At the chosen test temperature, the macroscopic fracture mode was essentially identical regardless of the orientation of the test specimen with respect to the wrought plate. The microscopic mechanisms governing cyclic deformation, fatigue life and final fracture behavior is presented in light of the mutually interactive influences of magnitude of applied stress, intrinsic microstructural effects, orientation of test specimen, and deformation characteristics of the constituents in the microstructure of this alloy steel.", 
    "editor": [
      {
        "familyName": "Srivatsan", 
        "givenName": "T. S.", 
        "type": "Person"
      }, 
      {
        "familyName": "Imam", 
        "givenName": "M. Ashraf", 
        "type": "Person"
      }, 
      {
        "familyName": "Srinivasan", 
        "givenName": "R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-48240-8_13", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-48597-3", 
        "978-3-319-48240-8"
      ], 
      "name": "Fatigue of Materials III", 
      "type": "Book"
    }, 
    "keywords": [
      "intrinsic microstructural effects", 
      "test specimen orientation", 
      "alloy steel", 
      "fracture behavior", 
      "fatigue life", 
      "microstructural effects", 
      "high cycle fatigue properties", 
      "test specimen", 
      "final fracture behavior", 
      "cycle fatigue properties", 
      "macroscopic fracture mode", 
      "specimen orientation", 
      "cyclic fatigue life", 
      "wrought plate", 
      "fatigue properties", 
      "steel plates", 
      "fracture mode", 
      "deformation characteristics", 
      "cyclic deformation", 
      "maximum stress", 
      "cyclic fatigue", 
      "test temperature", 
      "steel", 
      "applied stress", 
      "transverse orientation", 
      "wrought", 
      "plate", 
      "microscopic mechanism", 
      "microstructure", 
      "stress", 
      "specimen", 
      "deformation", 
      "orientation", 
      "behavior", 
      "influence", 
      "interactive influence", 
      "temperature", 
      "fatigue", 
      "properties", 
      "mode", 
      "characteristics", 
      "effect", 
      "respect", 
      "extrinsic influences", 
      "range", 
      "magnitude", 
      "cycle", 
      "results", 
      "failure", 
      "constituents", 
      "corresponding number", 
      "samples", 
      "mechanism", 
      "light", 
      "life", 
      "number", 
      "study", 
      "manuscript", 
      "Alloy Steel 300M", 
      "Steel 300M"
    ], 
    "name": "The Stress Controlled Cyclic Fatigue and Fracture Behavior of Alloy Steel 300M", 
    "pagination": "185-203", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027469015"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-48240-8_13"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-48240-8_13", 
      "https://app.dimensions.ai/details/publication/pub.1027469015"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_116.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-48240-8_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48240-8_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48240-8_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48240-8_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48240-8_13'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      23 PREDICATES      86 URIs      79 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-48240-8_13 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nd026e9794b28495cae090c381adfd9fb
4 schema:datePublished 2014
5 schema:datePublishedReg 2014-01-01
6 schema:description In this manuscript the results of a study aimed at understanding the extrinsic influence of test specimen orientation, with respect to wrought alloy steel plate, on high cycle fatigue properties and fracture behavior is highlighted. The alloy steel chosen was 300 M. Samples of this alloy steel prepared from both the longitudinal and transverse orientation were cyclically deformed over a range of maximum stress and the corresponding number of cycles to failure (NF) was recorded. The influence of test specimen orientation and intrinsic microstructural effects on cyclic fatigue life is presented. At the chosen test temperature, the macroscopic fracture mode was essentially identical regardless of the orientation of the test specimen with respect to the wrought plate. The microscopic mechanisms governing cyclic deformation, fatigue life and final fracture behavior is presented in light of the mutually interactive influences of magnitude of applied stress, intrinsic microstructural effects, orientation of test specimen, and deformation characteristics of the constituents in the microstructure of this alloy steel.
7 schema:editor N4cb271c9e6b340498d6a9a08218b9105
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N2f2be0230199402f9f398d9fd357ff93
12 schema:keywords Alloy Steel 300M
13 Steel 300M
14 alloy steel
15 applied stress
16 behavior
17 characteristics
18 constituents
19 corresponding number
20 cycle
21 cycle fatigue properties
22 cyclic deformation
23 cyclic fatigue
24 cyclic fatigue life
25 deformation
26 deformation characteristics
27 effect
28 extrinsic influences
29 failure
30 fatigue
31 fatigue life
32 fatigue properties
33 final fracture behavior
34 fracture behavior
35 fracture mode
36 high cycle fatigue properties
37 influence
38 interactive influence
39 intrinsic microstructural effects
40 life
41 light
42 macroscopic fracture mode
43 magnitude
44 manuscript
45 maximum stress
46 mechanism
47 microscopic mechanism
48 microstructural effects
49 microstructure
50 mode
51 number
52 orientation
53 plate
54 properties
55 range
56 respect
57 results
58 samples
59 specimen
60 specimen orientation
61 steel
62 steel plates
63 stress
64 study
65 temperature
66 test specimen
67 test specimen orientation
68 test temperature
69 transverse orientation
70 wrought
71 wrought plate
72 schema:name The Stress Controlled Cyclic Fatigue and Fracture Behavior of Alloy Steel 300M
73 schema:pagination 185-203
74 schema:productId N1a98a9dd8d2141deb612e6c8aa33392d
75 Nddad7adf3b2c44c086078d6f9af7b20d
76 schema:publisher Nb615647e586642c8a27966e7990ef2a4
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027469015
78 https://doi.org/10.1007/978-3-319-48240-8_13
79 schema:sdDatePublished 2021-11-01T18:46
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher Nea770e9dd04b4dc0bb4b1813bbcf95d3
82 schema:url https://doi.org/10.1007/978-3-319-48240-8_13
83 sgo:license sg:explorer/license/
84 sgo:sdDataset chapters
85 rdf:type schema:Chapter
86 N1a98a9dd8d2141deb612e6c8aa33392d schema:name dimensions_id
87 schema:value pub.1027469015
88 rdf:type schema:PropertyValue
89 N2f2be0230199402f9f398d9fd357ff93 schema:isbn 978-3-319-48240-8
90 978-3-319-48597-3
91 schema:name Fatigue of Materials III
92 rdf:type schema:Book
93 N3c3f210882cd487cbef9e4fd794b2282 schema:familyName Srinivasan
94 schema:givenName R.
95 rdf:type schema:Person
96 N4cb271c9e6b340498d6a9a08218b9105 rdf:first Ne9e00d01318643628a67c34483a3ec92
97 rdf:rest Nd7b0bffa811148ee82b6a6dd5909fe71
98 N501a21e6da91476e9c8532abc53ef8a8 rdf:first N3c3f210882cd487cbef9e4fd794b2282
99 rdf:rest rdf:nil
100 N858b62f41963449bb0f48f67175f326c rdf:first sg:person.015743473257.28
101 rdf:rest Ndd1cb2d9f2e348d28621b24c4125c156
102 Na059e82857164db4a4546ffb86842aec schema:familyName Imam
103 schema:givenName M. Ashraf
104 rdf:type schema:Person
105 Nb615647e586642c8a27966e7990ef2a4 schema:name Springer Nature
106 rdf:type schema:Organisation
107 Nd026e9794b28495cae090c381adfd9fb rdf:first sg:person.010412562231.72
108 rdf:rest Nd3e7ba089f8f4d2b802af6cdb9df05f0
109 Nd3e7ba089f8f4d2b802af6cdb9df05f0 rdf:first sg:person.015440524245.80
110 rdf:rest N858b62f41963449bb0f48f67175f326c
111 Nd7b0bffa811148ee82b6a6dd5909fe71 rdf:first Na059e82857164db4a4546ffb86842aec
112 rdf:rest N501a21e6da91476e9c8532abc53ef8a8
113 Ndd1cb2d9f2e348d28621b24c4125c156 rdf:first sg:person.016647363633.11
114 rdf:rest rdf:nil
115 Nddad7adf3b2c44c086078d6f9af7b20d schema:name doi
116 schema:value 10.1007/978-3-319-48240-8_13
117 rdf:type schema:PropertyValue
118 Ne9e00d01318643628a67c34483a3ec92 schema:familyName Srivatsan
119 schema:givenName T. S.
120 rdf:type schema:Person
121 Nea770e9dd04b4dc0bb4b1813bbcf95d3 schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
124 schema:name Engineering
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
127 schema:name Materials Engineering
128 rdf:type schema:DefinedTerm
129 sg:person.010412562231.72 schema:affiliation grid-institutes:grid.265881.0
130 schema:familyName Manigandan
131 schema:givenName K.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412562231.72
133 rdf:type schema:Person
134 sg:person.015440524245.80 schema:affiliation grid-institutes:grid.265881.0
135 schema:familyName Srivatsan
136 schema:givenName T. S.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80
138 rdf:type schema:Person
139 sg:person.015743473257.28 schema:affiliation grid-institutes:grid.265881.0
140 schema:familyName Doll
141 schema:givenName G.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015743473257.28
143 rdf:type schema:Person
144 sg:person.016647363633.11 schema:affiliation grid-institutes:grid.265881.0
145 schema:familyName Quick
146 schema:givenName T.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016647363633.11
148 rdf:type schema:Person
149 grid-institutes:grid.265881.0 schema:alternateName Department of Geology, The University of Akron, 44325-3903, Akron, Ohio, USA
150 Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA
151 Timken Engineered Surfaces Laboratories, Akron Engineering Research Center, The University of Akron, 44325-0406, Akron, OH, USA
152 schema:name Department of Geology, The University of Akron, 44325-3903, Akron, Ohio, USA
153 Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA
154 Timken Engineered Surfaces Laboratories, Akron Engineering Research Center, The University of Akron, 44325-0406, Akron, OH, USA
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...