Ontology type: schema:Chapter
2014
AUTHORSS. Vorozhtsov , A. Vorozhtsov , S. Kulkov
ABSTRACTIt was shown that hot pressing of powder mixtures Al-C (ndiamond) leads to the formation of aluminum carbide Al4C3 in the metal matrix; the intensity of the phase Al4C3 formation is greater the higher the carbon content in the initial mixture. According to the X-ray analysis the compound Al4C3 was finely structure with an average crystal size for the metal matrix was 40 nm and for aluminum carbide — 30 nm. Was found that increasing the volume fraction of the phase Al4C3 in the aluminum matrix leads to increased mechanical characteristics of the composite. For samples with 5% C in initial mixture, the ultimate strength was 400 MPa, whereas for 10% C and a half times higher - 600 MPa. Furthermore, increases as the total inelastic deformation to failure from 3 to 5% and the effective elastic modulus (Eef). More... »
PAGES1431-1435
Light Metals 2014
ISBN
978-3-319-48590-4
978-3-319-48144-9
http://scigraph.springernature.com/pub.10.1007/978-3-319-48144-9_239
DOIhttp://dx.doi.org/10.1007/978-3-319-48144-9_239
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1010702536
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Strength Physics and Materials Science of the SB RAS, Akademichesky str. 2/4, 634021, Tomsk, Russia",
"id": "http://www.grid.ac/institutes/grid.467103.7",
"name": [
"National research Tomsk state university, Lenin str., 36, 634050, Tomsk, Russia",
"Institute of Strength Physics and Materials Science of the SB RAS, Akademichesky str. 2/4, 634021, Tomsk, Russia"
],
"type": "Organization"
},
"familyName": "Vorozhtsov",
"givenName": "S.",
"id": "sg:person.010552241521.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552241521.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Problems of Chemical and Energetic Technologies of the SB RAS, Socialisticheskaya, 1, 659322, Biisk, Russia",
"id": "http://www.grid.ac/institutes/None",
"name": [
"National research Tomsk state university, Lenin str., 36, 634050, Tomsk, Russia",
"Institute for Problems of Chemical and Energetic Technologies of the SB RAS, Socialisticheskaya, 1, 659322, Biisk, Russia"
],
"type": "Organization"
},
"familyName": "Vorozhtsov",
"givenName": "A.",
"id": "sg:person.0771536125.70",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771536125.70"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Strength Physics and Materials Science of the SB RAS, Akademichesky str. 2/4, 634021, Tomsk, Russia",
"id": "http://www.grid.ac/institutes/grid.467103.7",
"name": [
"National research Tomsk state university, Lenin str., 36, 634050, Tomsk, Russia",
"Institute of Strength Physics and Materials Science of the SB RAS, Akademichesky str. 2/4, 634021, Tomsk, Russia"
],
"type": "Organization"
},
"familyName": "Kulkov",
"givenName": "S.",
"id": "sg:person.015231423745.64",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015231423745.64"
],
"type": "Person"
}
],
"datePublished": "2014",
"datePublishedReg": "2014-01-01",
"description": "It was shown that hot pressing of powder mixtures Al-C (ndiamond) leads to the formation of aluminum carbide Al4C3 in the metal matrix; the intensity of the phase Al4C3 formation is greater the higher the carbon content in the initial mixture. According to the X-ray analysis the compound Al4C3 was finely structure with an average crystal size for the metal matrix was 40 nm and for aluminum carbide \u2014 30 nm. Was found that increasing the volume fraction of the phase Al4C3 in the aluminum matrix leads to increased mechanical characteristics of the composite. For samples with 5% C in initial mixture, the ultimate strength was 400 MPa, whereas for 10% C and a half times higher - 600 MPa. Furthermore, increases as the total inelastic deformation to failure from 3 to 5% and the effective elastic modulus (Eef).",
"editor": [
{
"familyName": "Grandfield",
"givenName": "John",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-48144-9_239",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-48590-4",
"978-3-319-48144-9"
],
"name": "Light Metals 2014",
"type": "Book"
},
"keywords": [
"metal matrix",
"aluminum carbide Al4C3",
"total inelastic deformation",
"effective elastic moduli",
"initial mixture",
"Al4C3 formation",
"Al\u2013Al4C3",
"aluminum matrix",
"hot pressing",
"inelastic deformation",
"ultimate strength",
"mechanical properties",
"aluminum carbide",
"mechanical characteristics",
"elastic modulus",
"carbide Al4C3",
"volume fraction",
"phase composition",
"Al4C3",
"average crystal size",
"MPa",
"carbon content",
"crystal size",
"pressing",
"matrix",
"X-ray analysis",
"carbide",
"composites",
"modulus",
"powder",
"deformation",
"mixture",
"strength",
"structure",
"properties",
"formation",
"characteristics",
"al",
"size",
"composition",
"fraction",
"content",
"failure",
"increase",
"intensity",
"time",
"half times",
"analysis",
"samples"
],
"name": "The Structure, Phase Composition and Mechanical Properties of Hot Pressed Metal Matrix Nanocomposites Al-Al4C3",
"pagination": "1431-1435",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1010702536"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-48144-9_239"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-48144-9_239",
"https://app.dimensions.ai/details/publication/pub.1010702536"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:44",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_250.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-48144-9_239"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48144-9_239'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48144-9_239'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48144-9_239'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48144-9_239'
This table displays all metadata directly associated to this object as RDF triples.
128 TRIPLES
23 PREDICATES
75 URIs
68 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-48144-9_239 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | Nb44664f2f2a14a1eb2aa5203e1584fd1 |
4 | ″ | schema:datePublished | 2014 |
5 | ″ | schema:datePublishedReg | 2014-01-01 |
6 | ″ | schema:description | It was shown that hot pressing of powder mixtures Al-C (ndiamond) leads to the formation of aluminum carbide Al4C3 in the metal matrix; the intensity of the phase Al4C3 formation is greater the higher the carbon content in the initial mixture. According to the X-ray analysis the compound Al4C3 was finely structure with an average crystal size for the metal matrix was 40 nm and for aluminum carbide — 30 nm. Was found that increasing the volume fraction of the phase Al4C3 in the aluminum matrix leads to increased mechanical characteristics of the composite. For samples with 5% C in initial mixture, the ultimate strength was 400 MPa, whereas for 10% C and a half times higher - 600 MPa. Furthermore, increases as the total inelastic deformation to failure from 3 to 5% and the effective elastic modulus (Eef). |
7 | ″ | schema:editor | Nc88a81423e4f4cebb41beee44e65108d |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N8878956f221a490dbc672d47bb11111a |
12 | ″ | schema:keywords | Al4C3 |
13 | ″ | ″ | Al4C3 formation |
14 | ″ | ″ | Al–Al4C3 |
15 | ″ | ″ | MPa |
16 | ″ | ″ | X-ray analysis |
17 | ″ | ″ | al |
18 | ″ | ″ | aluminum carbide |
19 | ″ | ″ | aluminum carbide Al4C3 |
20 | ″ | ″ | aluminum matrix |
21 | ″ | ″ | analysis |
22 | ″ | ″ | average crystal size |
23 | ″ | ″ | carbide |
24 | ″ | ″ | carbide Al4C3 |
25 | ″ | ″ | carbon content |
26 | ″ | ″ | characteristics |
27 | ″ | ″ | composites |
28 | ″ | ″ | composition |
29 | ″ | ″ | content |
30 | ″ | ″ | crystal size |
31 | ″ | ″ | deformation |
32 | ″ | ″ | effective elastic moduli |
33 | ″ | ″ | elastic modulus |
34 | ″ | ″ | failure |
35 | ″ | ″ | formation |
36 | ″ | ″ | fraction |
37 | ″ | ″ | half times |
38 | ″ | ″ | hot pressing |
39 | ″ | ″ | increase |
40 | ″ | ″ | inelastic deformation |
41 | ″ | ″ | initial mixture |
42 | ″ | ″ | intensity |
43 | ″ | ″ | matrix |
44 | ″ | ″ | mechanical characteristics |
45 | ″ | ″ | mechanical properties |
46 | ″ | ″ | metal matrix |
47 | ″ | ″ | mixture |
48 | ″ | ″ | modulus |
49 | ″ | ″ | phase composition |
50 | ″ | ″ | powder |
51 | ″ | ″ | pressing |
52 | ″ | ″ | properties |
53 | ″ | ″ | samples |
54 | ″ | ″ | size |
55 | ″ | ″ | strength |
56 | ″ | ″ | structure |
57 | ″ | ″ | time |
58 | ″ | ″ | total inelastic deformation |
59 | ″ | ″ | ultimate strength |
60 | ″ | ″ | volume fraction |
61 | ″ | schema:name | The Structure, Phase Composition and Mechanical Properties of Hot Pressed Metal Matrix Nanocomposites Al-Al4C3 |
62 | ″ | schema:pagination | 1431-1435 |
63 | ″ | schema:productId | N4cc9151ef8294acfbf4a313d124d74bc |
64 | ″ | ″ | N6dae170116b14f69812a82b5e4a5bca0 |
65 | ″ | schema:publisher | N302495ed45dd49ceae7fa21a58906803 |
66 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1010702536 |
67 | ″ | ″ | https://doi.org/10.1007/978-3-319-48144-9_239 |
68 | ″ | schema:sdDatePublished | 2022-05-20T07:44 |
69 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
70 | ″ | schema:sdPublisher | Nc8d2cd70129c4cc4a66a0bae7b5e629c |
71 | ″ | schema:url | https://doi.org/10.1007/978-3-319-48144-9_239 |
72 | ″ | sgo:license | sg:explorer/license/ |
73 | ″ | sgo:sdDataset | chapters |
74 | ″ | rdf:type | schema:Chapter |
75 | N02e32d2f46784f2a8d4aa62d51ef61d7 | rdf:first | sg:person.015231423745.64 |
76 | ″ | rdf:rest | rdf:nil |
77 | N302495ed45dd49ceae7fa21a58906803 | schema:name | Springer Nature |
78 | ″ | rdf:type | schema:Organisation |
79 | N4cc9151ef8294acfbf4a313d124d74bc | schema:name | dimensions_id |
80 | ″ | schema:value | pub.1010702536 |
81 | ″ | rdf:type | schema:PropertyValue |
82 | N53080a7cd9d744e281b86d4ba26f7ca3 | rdf:first | sg:person.0771536125.70 |
83 | ″ | rdf:rest | N02e32d2f46784f2a8d4aa62d51ef61d7 |
84 | N5d41dd9586784bf3b23ae481234a511f | schema:familyName | Grandfield |
85 | ″ | schema:givenName | John |
86 | ″ | rdf:type | schema:Person |
87 | N6dae170116b14f69812a82b5e4a5bca0 | schema:name | doi |
88 | ″ | schema:value | 10.1007/978-3-319-48144-9_239 |
89 | ″ | rdf:type | schema:PropertyValue |
90 | N8878956f221a490dbc672d47bb11111a | schema:isbn | 978-3-319-48144-9 |
91 | ″ | ″ | 978-3-319-48590-4 |
92 | ″ | schema:name | Light Metals 2014 |
93 | ″ | rdf:type | schema:Book |
94 | Nb44664f2f2a14a1eb2aa5203e1584fd1 | rdf:first | sg:person.010552241521.39 |
95 | ″ | rdf:rest | N53080a7cd9d744e281b86d4ba26f7ca3 |
96 | Nc88a81423e4f4cebb41beee44e65108d | rdf:first | N5d41dd9586784bf3b23ae481234a511f |
97 | ″ | rdf:rest | rdf:nil |
98 | Nc8d2cd70129c4cc4a66a0bae7b5e629c | schema:name | Springer Nature - SN SciGraph project |
99 | ″ | rdf:type | schema:Organization |
100 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
101 | ″ | schema:name | Engineering |
102 | ″ | rdf:type | schema:DefinedTerm |
103 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
104 | ″ | schema:name | Materials Engineering |
105 | ″ | rdf:type | schema:DefinedTerm |
106 | sg:person.010552241521.39 | schema:affiliation | grid-institutes:grid.467103.7 |
107 | ″ | schema:familyName | Vorozhtsov |
108 | ″ | schema:givenName | S. |
109 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552241521.39 |
110 | ″ | rdf:type | schema:Person |
111 | sg:person.015231423745.64 | schema:affiliation | grid-institutes:grid.467103.7 |
112 | ″ | schema:familyName | Kulkov |
113 | ″ | schema:givenName | S. |
114 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015231423745.64 |
115 | ″ | rdf:type | schema:Person |
116 | sg:person.0771536125.70 | schema:affiliation | grid-institutes:None |
117 | ″ | schema:familyName | Vorozhtsov |
118 | ″ | schema:givenName | A. |
119 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771536125.70 |
120 | ″ | rdf:type | schema:Person |
121 | grid-institutes:None | schema:alternateName | Institute for Problems of Chemical and Energetic Technologies of the SB RAS, Socialisticheskaya, 1, 659322, Biisk, Russia |
122 | ″ | schema:name | Institute for Problems of Chemical and Energetic Technologies of the SB RAS, Socialisticheskaya, 1, 659322, Biisk, Russia |
123 | ″ | ″ | National research Tomsk state university, Lenin str., 36, 634050, Tomsk, Russia |
124 | ″ | rdf:type | schema:Organization |
125 | grid-institutes:grid.467103.7 | schema:alternateName | Institute of Strength Physics and Materials Science of the SB RAS, Akademichesky str. 2/4, 634021, Tomsk, Russia |
126 | ″ | schema:name | Institute of Strength Physics and Materials Science of the SB RAS, Akademichesky str. 2/4, 634021, Tomsk, Russia |
127 | ″ | ″ | National research Tomsk state university, Lenin str., 36, 634050, Tomsk, Russia |
128 | ″ | rdf:type | schema:Organization |