The Physical-Mechanical Properties of Aluminum Nanocomposites Produced by High Energy Explosion Impact View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

S. Vorozhtsov , A. Vorozhtsov , S. Kulkov , V. Komarov

ABSTRACT

The present paper uses explosion compacting of Al nanoparticles to create light nanocomposite with increased physico-mechanical properties. Russian civil explosive Uglenit was chosen as high energy material for compacting. The formation of the structure and properties of aluminum based materials after shock-wave impact was studied. It was found that shock-wave treatment of different samples a) aluminum powder and b) powder mixtures Al +10 wt.% C (in the form of detonation diamonds) and c) Al +10 wt.% Al2O3 produces nanostructed materials with almost the theoretical density. X-ray diffraction analysis showed that in the samples with the addition of carbon and aluminum oxide was formed two-phase state of aluminum with a significantly different structure parameters. In this case, the lattice parameter of nanophase increased by 0.5%, which testifies to its nonequilibrium state. This increase of the parameter may be due to compressive stress, evaluation of which gives the value of 350 MPa. It was shown that the materials have high values of mechanical properties — hardness, compressive yield strength. More... »

PAGES

1397-1400

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-48144-9_233

DOI

http://dx.doi.org/10.1007/978-3-319-48144-9_233

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033482003


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science of the SB RAS, Akademichesky str. 2/4, 634021, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "National research Tomsk state university, Lenin str., 36, 634050, Tomsk, Russia", 
            "Institute of Strength Physics and Materials Science of the SB RAS, Akademichesky str. 2/4, 634021, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vorozhtsov", 
        "givenName": "S.", 
        "id": "sg:person.010552241521.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552241521.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Problems of Chemical and Energetic Technologies of the SB RAS, Socialisticheskaya, 1, 659322, Biisk, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "National research Tomsk state university, Lenin str., 36, 634050, Tomsk, Russia", 
            "Institute for Problems of Chemical and Energetic Technologies of the SB RAS, Socialisticheskaya, 1, 659322, Biisk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vorozhtsov", 
        "givenName": "A.", 
        "id": "sg:person.0771536125.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771536125.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science of the SB RAS, Akademichesky str. 2/4, 634021, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "National research Tomsk state university, Lenin str., 36, 634050, Tomsk, Russia", 
            "Institute of Strength Physics and Materials Science of the SB RAS, Akademichesky str. 2/4, 634021, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kulkov", 
        "givenName": "S.", 
        "id": "sg:person.015231423745.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015231423745.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Problems of Chemical and Energetic Technologies of the SB RAS, Socialisticheskaya, 1, 659322, Biisk, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute for Problems of Chemical and Energetic Technologies of the SB RAS, Socialisticheskaya, 1, 659322, Biisk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Komarov", 
        "givenName": "V.", 
        "id": "sg:person.01154077725.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154077725.84"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "The present paper uses explosion compacting of Al nanoparticles to create light nanocomposite with increased physico-mechanical properties. Russian civil explosive Uglenit was chosen as high energy material for compacting. The formation of the structure and properties of aluminum based materials after shock-wave impact was studied. It was found that shock-wave treatment of different samples a) aluminum powder and b) powder mixtures Al +10 wt.% C (in the form of detonation diamonds) and c) Al +10 wt.% Al2O3 produces nanostructed materials with almost the theoretical density. X-ray diffraction analysis showed that in the samples with the addition of carbon and aluminum oxide was formed two-phase state of aluminum with a significantly different structure parameters. In this case, the lattice parameter of nanophase increased by 0.5%, which testifies to its nonequilibrium state. This increase of the parameter may be due to compressive stress, evaluation of which gives the value of 350 MPa. It was shown that the materials have high values of mechanical properties \u2014 hardness, compressive yield strength.", 
    "editor": [
      {
        "familyName": "Grandfield", 
        "givenName": "John", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-48144-9_233", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-48590-4", 
        "978-3-319-48144-9"
      ], 
      "name": "Light Metals 2014", 
      "type": "Book"
    }, 
    "keywords": [
      "compressive yield strength", 
      "properties of aluminum", 
      "physical-mechanical properties", 
      "physico-mechanical properties", 
      "shock wave impact", 
      "different structure parameters", 
      "addition of carbon", 
      "aluminum nanocomposites", 
      "aluminum powder", 
      "yield strength", 
      "two-phase state", 
      "explosion impact", 
      "theoretical density", 
      "compressive stress", 
      "aluminum oxide", 
      "energy materials", 
      "high-energy materials", 
      "X-ray diffraction analysis", 
      "structure parameters", 
      "powder", 
      "aluminum", 
      "materials", 
      "lattice parameters", 
      "diffraction analysis", 
      "wt", 
      "properties", 
      "present paper", 
      "MPa", 
      "parameters", 
      "nanocomposites", 
      "higher values", 
      "Al2O3", 
      "nanophase", 
      "nonequilibrium state", 
      "al", 
      "oxide", 
      "different samples", 
      "strength", 
      "shock wave treatment", 
      "density", 
      "carbon", 
      "explosion", 
      "stress", 
      "structure", 
      "values", 
      "samples", 
      "formation", 
      "impact", 
      "state", 
      "addition", 
      "increase", 
      "analysis", 
      "evaluation", 
      "cases", 
      "treatment", 
      "paper"
    ], 
    "name": "The Physical-Mechanical Properties of Aluminum Nanocomposites Produced by High Energy Explosion Impact", 
    "pagination": "1397-1400", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033482003"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-48144-9_233"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-48144-9_233", 
      "https://app.dimensions.ai/details/publication/pub.1033482003"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_304.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-48144-9_233"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48144-9_233'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48144-9_233'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48144-9_233'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48144-9_233'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      22 PREDICATES      83 URIs      74 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-48144-9_233 schema:about anzsrc-for:03
2 anzsrc-for:0303
3 anzsrc-for:09
4 anzsrc-for:0912
5 schema:author Nf27efb944b6541d992a6f0d1ceed7722
6 schema:datePublished 2014
7 schema:datePublishedReg 2014-01-01
8 schema:description The present paper uses explosion compacting of Al nanoparticles to create light nanocomposite with increased physico-mechanical properties. Russian civil explosive Uglenit was chosen as high energy material for compacting. The formation of the structure and properties of aluminum based materials after shock-wave impact was studied. It was found that shock-wave treatment of different samples a) aluminum powder and b) powder mixtures Al +10 wt.% C (in the form of detonation diamonds) and c) Al +10 wt.% Al2O3 produces nanostructed materials with almost the theoretical density. X-ray diffraction analysis showed that in the samples with the addition of carbon and aluminum oxide was formed two-phase state of aluminum with a significantly different structure parameters. In this case, the lattice parameter of nanophase increased by 0.5%, which testifies to its nonequilibrium state. This increase of the parameter may be due to compressive stress, evaluation of which gives the value of 350 MPa. It was shown that the materials have high values of mechanical properties — hardness, compressive yield strength.
9 schema:editor N47591403a354488998b7ca3a8b59df08
10 schema:genre chapter
11 schema:isAccessibleForFree false
12 schema:isPartOf Nb8b13875d60c45d9b0eb60a5d5105cca
13 schema:keywords Al2O3
14 MPa
15 X-ray diffraction analysis
16 addition
17 addition of carbon
18 al
19 aluminum
20 aluminum nanocomposites
21 aluminum oxide
22 aluminum powder
23 analysis
24 carbon
25 cases
26 compressive stress
27 compressive yield strength
28 density
29 different samples
30 different structure parameters
31 diffraction analysis
32 energy materials
33 evaluation
34 explosion
35 explosion impact
36 formation
37 high-energy materials
38 higher values
39 impact
40 increase
41 lattice parameters
42 materials
43 nanocomposites
44 nanophase
45 nonequilibrium state
46 oxide
47 paper
48 parameters
49 physical-mechanical properties
50 physico-mechanical properties
51 powder
52 present paper
53 properties
54 properties of aluminum
55 samples
56 shock wave impact
57 shock wave treatment
58 state
59 strength
60 stress
61 structure
62 structure parameters
63 theoretical density
64 treatment
65 two-phase state
66 values
67 wt
68 yield strength
69 schema:name The Physical-Mechanical Properties of Aluminum Nanocomposites Produced by High Energy Explosion Impact
70 schema:pagination 1397-1400
71 schema:productId Nbe997d07eb2348d099b4d1715b6b8e96
72 Ne3b16895b6bf4d56b76b8eaf5fdb4127
73 schema:publisher N667926544ade4b5cb44d363082112208
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033482003
75 https://doi.org/10.1007/978-3-319-48144-9_233
76 schema:sdDatePublished 2022-09-02T16:13
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N5b71d35ed50d4178b58c41372b5917b7
79 schema:url https://doi.org/10.1007/978-3-319-48144-9_233
80 sgo:license sg:explorer/license/
81 sgo:sdDataset chapters
82 rdf:type schema:Chapter
83 N0395112638a1484f9b7317e1499888ea schema:familyName Grandfield
84 schema:givenName John
85 rdf:type schema:Person
86 N3ec4fc71488f4f12bd7a899c6414aa70 rdf:first sg:person.015231423745.64
87 rdf:rest Nc85235debde0400b8b0117a639091d83
88 N47591403a354488998b7ca3a8b59df08 rdf:first N0395112638a1484f9b7317e1499888ea
89 rdf:rest rdf:nil
90 N5b71d35ed50d4178b58c41372b5917b7 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N667926544ade4b5cb44d363082112208 schema:name Springer Nature
93 rdf:type schema:Organisation
94 Nb8b13875d60c45d9b0eb60a5d5105cca schema:isbn 978-3-319-48144-9
95 978-3-319-48590-4
96 schema:name Light Metals 2014
97 rdf:type schema:Book
98 Nbe997d07eb2348d099b4d1715b6b8e96 schema:name dimensions_id
99 schema:value pub.1033482003
100 rdf:type schema:PropertyValue
101 Nc85235debde0400b8b0117a639091d83 rdf:first sg:person.01154077725.84
102 rdf:rest rdf:nil
103 Ne3b16895b6bf4d56b76b8eaf5fdb4127 schema:name doi
104 schema:value 10.1007/978-3-319-48144-9_233
105 rdf:type schema:PropertyValue
106 Nf27efb944b6541d992a6f0d1ceed7722 rdf:first sg:person.010552241521.39
107 rdf:rest Nf9f0168899cd4565b3284cd2b478240f
108 Nf9f0168899cd4565b3284cd2b478240f rdf:first sg:person.0771536125.70
109 rdf:rest N3ec4fc71488f4f12bd7a899c6414aa70
110 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
111 schema:name Chemical Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
114 schema:name Macromolecular and Materials Chemistry
115 rdf:type schema:DefinedTerm
116 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
117 schema:name Engineering
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
120 schema:name Materials Engineering
121 rdf:type schema:DefinedTerm
122 sg:person.010552241521.39 schema:affiliation grid-institutes:grid.467103.7
123 schema:familyName Vorozhtsov
124 schema:givenName S.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552241521.39
126 rdf:type schema:Person
127 sg:person.01154077725.84 schema:affiliation grid-institutes:None
128 schema:familyName Komarov
129 schema:givenName V.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154077725.84
131 rdf:type schema:Person
132 sg:person.015231423745.64 schema:affiliation grid-institutes:grid.467103.7
133 schema:familyName Kulkov
134 schema:givenName S.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015231423745.64
136 rdf:type schema:Person
137 sg:person.0771536125.70 schema:affiliation grid-institutes:None
138 schema:familyName Vorozhtsov
139 schema:givenName A.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771536125.70
141 rdf:type schema:Person
142 grid-institutes:None schema:alternateName Institute for Problems of Chemical and Energetic Technologies of the SB RAS, Socialisticheskaya, 1, 659322, Biisk, Russia
143 schema:name Institute for Problems of Chemical and Energetic Technologies of the SB RAS, Socialisticheskaya, 1, 659322, Biisk, Russia
144 National research Tomsk state university, Lenin str., 36, 634050, Tomsk, Russia
145 rdf:type schema:Organization
146 grid-institutes:grid.467103.7 schema:alternateName Institute of Strength Physics and Materials Science of the SB RAS, Akademichesky str. 2/4, 634021, Tomsk, Russia
147 schema:name Institute of Strength Physics and Materials Science of the SB RAS, Akademichesky str. 2/4, 634021, Tomsk, Russia
148 National research Tomsk state university, Lenin str., 36, 634050, Tomsk, Russia
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...