Ontology type: schema:Chapter
2014
AUTHORSS. Vorozhtsov , A. Vorozhtsov , S. Kulkov , V. Komarov
ABSTRACTThe present paper uses explosion compacting of Al nanoparticles to create light nanocomposite with increased physico-mechanical properties. Russian civil explosive Uglenit was chosen as high energy material for compacting. The formation of the structure and properties of aluminum based materials after shock-wave impact was studied. It was found that shock-wave treatment of different samples a) aluminum powder and b) powder mixtures Al +10 wt.% C (in the form of detonation diamonds) and c) Al +10 wt.% Al2O3 produces nanostructed materials with almost the theoretical density. X-ray diffraction analysis showed that in the samples with the addition of carbon and aluminum oxide was formed two-phase state of aluminum with a significantly different structure parameters. In this case, the lattice parameter of nanophase increased by 0.5%, which testifies to its nonequilibrium state. This increase of the parameter may be due to compressive stress, evaluation of which gives the value of 350 MPa. It was shown that the materials have high values of mechanical properties — hardness, compressive yield strength. More... »
PAGES1397-1400
Light Metals 2014
ISBN
978-3-319-48590-4
978-3-319-48144-9
http://scigraph.springernature.com/pub.10.1007/978-3-319-48144-9_233
DOIhttp://dx.doi.org/10.1007/978-3-319-48144-9_233
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1033482003
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Macromolecular and Materials Chemistry",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Strength Physics and Materials Science of the SB RAS, Akademichesky str. 2/4, 634021, Tomsk, Russia",
"id": "http://www.grid.ac/institutes/grid.467103.7",
"name": [
"National research Tomsk state university, Lenin str., 36, 634050, Tomsk, Russia",
"Institute of Strength Physics and Materials Science of the SB RAS, Akademichesky str. 2/4, 634021, Tomsk, Russia"
],
"type": "Organization"
},
"familyName": "Vorozhtsov",
"givenName": "S.",
"id": "sg:person.010552241521.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552241521.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Problems of Chemical and Energetic Technologies of the SB RAS, Socialisticheskaya, 1, 659322, Biisk, Russia",
"id": "http://www.grid.ac/institutes/None",
"name": [
"National research Tomsk state university, Lenin str., 36, 634050, Tomsk, Russia",
"Institute for Problems of Chemical and Energetic Technologies of the SB RAS, Socialisticheskaya, 1, 659322, Biisk, Russia"
],
"type": "Organization"
},
"familyName": "Vorozhtsov",
"givenName": "A.",
"id": "sg:person.0771536125.70",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771536125.70"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Strength Physics and Materials Science of the SB RAS, Akademichesky str. 2/4, 634021, Tomsk, Russia",
"id": "http://www.grid.ac/institutes/grid.467103.7",
"name": [
"National research Tomsk state university, Lenin str., 36, 634050, Tomsk, Russia",
"Institute of Strength Physics and Materials Science of the SB RAS, Akademichesky str. 2/4, 634021, Tomsk, Russia"
],
"type": "Organization"
},
"familyName": "Kulkov",
"givenName": "S.",
"id": "sg:person.015231423745.64",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015231423745.64"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Problems of Chemical and Energetic Technologies of the SB RAS, Socialisticheskaya, 1, 659322, Biisk, Russia",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Institute for Problems of Chemical and Energetic Technologies of the SB RAS, Socialisticheskaya, 1, 659322, Biisk, Russia"
],
"type": "Organization"
},
"familyName": "Komarov",
"givenName": "V.",
"id": "sg:person.01154077725.84",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154077725.84"
],
"type": "Person"
}
],
"datePublished": "2014",
"datePublishedReg": "2014-01-01",
"description": "The present paper uses explosion compacting of Al nanoparticles to create light nanocomposite with increased physico-mechanical properties. Russian civil explosive Uglenit was chosen as high energy material for compacting. The formation of the structure and properties of aluminum based materials after shock-wave impact was studied. It was found that shock-wave treatment of different samples a) aluminum powder and b) powder mixtures Al +10 wt.% C (in the form of detonation diamonds) and c) Al +10 wt.% Al2O3 produces nanostructed materials with almost the theoretical density. X-ray diffraction analysis showed that in the samples with the addition of carbon and aluminum oxide was formed two-phase state of aluminum with a significantly different structure parameters. In this case, the lattice parameter of nanophase increased by 0.5%, which testifies to its nonequilibrium state. This increase of the parameter may be due to compressive stress, evaluation of which gives the value of 350 MPa. It was shown that the materials have high values of mechanical properties \u2014 hardness, compressive yield strength.",
"editor": [
{
"familyName": "Grandfield",
"givenName": "John",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-48144-9_233",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-48590-4",
"978-3-319-48144-9"
],
"name": "Light Metals 2014",
"type": "Book"
},
"keywords": [
"compressive yield strength",
"properties of aluminum",
"physical-mechanical properties",
"physico-mechanical properties",
"shock wave impact",
"different structure parameters",
"addition of carbon",
"aluminum nanocomposites",
"aluminum powder",
"yield strength",
"two-phase state",
"explosion impact",
"theoretical density",
"compressive stress",
"aluminum oxide",
"energy materials",
"high-energy materials",
"X-ray diffraction analysis",
"structure parameters",
"powder",
"aluminum",
"materials",
"lattice parameters",
"diffraction analysis",
"wt",
"properties",
"present paper",
"MPa",
"parameters",
"nanocomposites",
"higher values",
"Al2O3",
"nanophase",
"nonequilibrium state",
"al",
"oxide",
"different samples",
"strength",
"shock wave treatment",
"density",
"carbon",
"explosion",
"stress",
"structure",
"values",
"samples",
"formation",
"impact",
"state",
"addition",
"increase",
"analysis",
"evaluation",
"cases",
"treatment",
"paper"
],
"name": "The Physical-Mechanical Properties of Aluminum Nanocomposites Produced by High Energy Explosion Impact",
"pagination": "1397-1400",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1033482003"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-48144-9_233"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-48144-9_233",
"https://app.dimensions.ai/details/publication/pub.1033482003"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-08-04T17:22",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/chapter/chapter_75.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-48144-9_233"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48144-9_233'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48144-9_233'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48144-9_233'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48144-9_233'
This table displays all metadata directly associated to this object as RDF triples.
149 TRIPLES
22 PREDICATES
83 URIs
74 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-48144-9_233 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0303 |
3 | ″ | ″ | anzsrc-for:09 |
4 | ″ | ″ | anzsrc-for:0912 |
5 | ″ | schema:author | Na8ce3885b5ae44b2949dc34c1ca1d022 |
6 | ″ | schema:datePublished | 2014 |
7 | ″ | schema:datePublishedReg | 2014-01-01 |
8 | ″ | schema:description | The present paper uses explosion compacting of Al nanoparticles to create light nanocomposite with increased physico-mechanical properties. Russian civil explosive Uglenit was chosen as high energy material for compacting. The formation of the structure and properties of aluminum based materials after shock-wave impact was studied. It was found that shock-wave treatment of different samples a) aluminum powder and b) powder mixtures Al +10 wt.% C (in the form of detonation diamonds) and c) Al +10 wt.% Al2O3 produces nanostructed materials with almost the theoretical density. X-ray diffraction analysis showed that in the samples with the addition of carbon and aluminum oxide was formed two-phase state of aluminum with a significantly different structure parameters. In this case, the lattice parameter of nanophase increased by 0.5%, which testifies to its nonequilibrium state. This increase of the parameter may be due to compressive stress, evaluation of which gives the value of 350 MPa. It was shown that the materials have high values of mechanical properties — hardness, compressive yield strength. |
9 | ″ | schema:editor | N0314f758188147ffbfaf6618bd70240a |
10 | ″ | schema:genre | chapter |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N7f2054f791024f37881139534f9a9d02 |
13 | ″ | schema:keywords | Al2O3 |
14 | ″ | ″ | MPa |
15 | ″ | ″ | X-ray diffraction analysis |
16 | ″ | ″ | addition |
17 | ″ | ″ | addition of carbon |
18 | ″ | ″ | al |
19 | ″ | ″ | aluminum |
20 | ″ | ″ | aluminum nanocomposites |
21 | ″ | ″ | aluminum oxide |
22 | ″ | ″ | aluminum powder |
23 | ″ | ″ | analysis |
24 | ″ | ″ | carbon |
25 | ″ | ″ | cases |
26 | ″ | ″ | compressive stress |
27 | ″ | ″ | compressive yield strength |
28 | ″ | ″ | density |
29 | ″ | ″ | different samples |
30 | ″ | ″ | different structure parameters |
31 | ″ | ″ | diffraction analysis |
32 | ″ | ″ | energy materials |
33 | ″ | ″ | evaluation |
34 | ″ | ″ | explosion |
35 | ″ | ″ | explosion impact |
36 | ″ | ″ | formation |
37 | ″ | ″ | high-energy materials |
38 | ″ | ″ | higher values |
39 | ″ | ″ | impact |
40 | ″ | ″ | increase |
41 | ″ | ″ | lattice parameters |
42 | ″ | ″ | materials |
43 | ″ | ″ | nanocomposites |
44 | ″ | ″ | nanophase |
45 | ″ | ″ | nonequilibrium state |
46 | ″ | ″ | oxide |
47 | ″ | ″ | paper |
48 | ″ | ″ | parameters |
49 | ″ | ″ | physical-mechanical properties |
50 | ″ | ″ | physico-mechanical properties |
51 | ″ | ″ | powder |
52 | ″ | ″ | present paper |
53 | ″ | ″ | properties |
54 | ″ | ″ | properties of aluminum |
55 | ″ | ″ | samples |
56 | ″ | ″ | shock wave impact |
57 | ″ | ″ | shock wave treatment |
58 | ″ | ″ | state |
59 | ″ | ″ | strength |
60 | ″ | ″ | stress |
61 | ″ | ″ | structure |
62 | ″ | ″ | structure parameters |
63 | ″ | ″ | theoretical density |
64 | ″ | ″ | treatment |
65 | ″ | ″ | two-phase state |
66 | ″ | ″ | values |
67 | ″ | ″ | wt |
68 | ″ | ″ | yield strength |
69 | ″ | schema:name | The Physical-Mechanical Properties of Aluminum Nanocomposites Produced by High Energy Explosion Impact |
70 | ″ | schema:pagination | 1397-1400 |
71 | ″ | schema:productId | N038ea88744b24ae2a2b0d077d57aedf6 |
72 | ″ | ″ | Nf5fba3d8ca9141c89b6b339800e416b5 |
73 | ″ | schema:publisher | N95a018e123ad466d8cb02d3ffccbe138 |
74 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1033482003 |
75 | ″ | ″ | https://doi.org/10.1007/978-3-319-48144-9_233 |
76 | ″ | schema:sdDatePublished | 2022-08-04T17:22 |
77 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
78 | ″ | schema:sdPublisher | N7a23331c423d4573887527ce2519e0fb |
79 | ″ | schema:url | https://doi.org/10.1007/978-3-319-48144-9_233 |
80 | ″ | sgo:license | sg:explorer/license/ |
81 | ″ | sgo:sdDataset | chapters |
82 | ″ | rdf:type | schema:Chapter |
83 | N0314f758188147ffbfaf6618bd70240a | rdf:first | Nec5d409107bc4993be1a5e56fd960002 |
84 | ″ | rdf:rest | rdf:nil |
85 | N038ea88744b24ae2a2b0d077d57aedf6 | schema:name | doi |
86 | ″ | schema:value | 10.1007/978-3-319-48144-9_233 |
87 | ″ | rdf:type | schema:PropertyValue |
88 | N44e9cdea14b54044a5a0ec4fdeb2a24f | rdf:first | sg:person.01154077725.84 |
89 | ″ | rdf:rest | rdf:nil |
90 | N635f4c56c56d4d9dae48a93b2455aedf | rdf:first | sg:person.015231423745.64 |
91 | ″ | rdf:rest | N44e9cdea14b54044a5a0ec4fdeb2a24f |
92 | N7a23331c423d4573887527ce2519e0fb | schema:name | Springer Nature - SN SciGraph project |
93 | ″ | rdf:type | schema:Organization |
94 | N7f2054f791024f37881139534f9a9d02 | schema:isbn | 978-3-319-48144-9 |
95 | ″ | ″ | 978-3-319-48590-4 |
96 | ″ | schema:name | Light Metals 2014 |
97 | ″ | rdf:type | schema:Book |
98 | N95a018e123ad466d8cb02d3ffccbe138 | schema:name | Springer Nature |
99 | ″ | rdf:type | schema:Organisation |
100 | Na8ce3885b5ae44b2949dc34c1ca1d022 | rdf:first | sg:person.010552241521.39 |
101 | ″ | rdf:rest | Ndba4809099494892973e30e8665cd8bf |
102 | Ndba4809099494892973e30e8665cd8bf | rdf:first | sg:person.0771536125.70 |
103 | ″ | rdf:rest | N635f4c56c56d4d9dae48a93b2455aedf |
104 | Nec5d409107bc4993be1a5e56fd960002 | schema:familyName | Grandfield |
105 | ″ | schema:givenName | John |
106 | ″ | rdf:type | schema:Person |
107 | Nf5fba3d8ca9141c89b6b339800e416b5 | schema:name | dimensions_id |
108 | ″ | schema:value | pub.1033482003 |
109 | ″ | rdf:type | schema:PropertyValue |
110 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
111 | ″ | schema:name | Chemical Sciences |
112 | ″ | rdf:type | schema:DefinedTerm |
113 | anzsrc-for:0303 | schema:inDefinedTermSet | anzsrc-for: |
114 | ″ | schema:name | Macromolecular and Materials Chemistry |
115 | ″ | rdf:type | schema:DefinedTerm |
116 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
117 | ″ | schema:name | Engineering |
118 | ″ | rdf:type | schema:DefinedTerm |
119 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
120 | ″ | schema:name | Materials Engineering |
121 | ″ | rdf:type | schema:DefinedTerm |
122 | sg:person.010552241521.39 | schema:affiliation | grid-institutes:grid.467103.7 |
123 | ″ | schema:familyName | Vorozhtsov |
124 | ″ | schema:givenName | S. |
125 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552241521.39 |
126 | ″ | rdf:type | schema:Person |
127 | sg:person.01154077725.84 | schema:affiliation | grid-institutes:None |
128 | ″ | schema:familyName | Komarov |
129 | ″ | schema:givenName | V. |
130 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154077725.84 |
131 | ″ | rdf:type | schema:Person |
132 | sg:person.015231423745.64 | schema:affiliation | grid-institutes:grid.467103.7 |
133 | ″ | schema:familyName | Kulkov |
134 | ″ | schema:givenName | S. |
135 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015231423745.64 |
136 | ″ | rdf:type | schema:Person |
137 | sg:person.0771536125.70 | schema:affiliation | grid-institutes:None |
138 | ″ | schema:familyName | Vorozhtsov |
139 | ″ | schema:givenName | A. |
140 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771536125.70 |
141 | ″ | rdf:type | schema:Person |
142 | grid-institutes:None | schema:alternateName | Institute for Problems of Chemical and Energetic Technologies of the SB RAS, Socialisticheskaya, 1, 659322, Biisk, Russia |
143 | ″ | schema:name | Institute for Problems of Chemical and Energetic Technologies of the SB RAS, Socialisticheskaya, 1, 659322, Biisk, Russia |
144 | ″ | ″ | National research Tomsk state university, Lenin str., 36, 634050, Tomsk, Russia |
145 | ″ | rdf:type | schema:Organization |
146 | grid-institutes:grid.467103.7 | schema:alternateName | Institute of Strength Physics and Materials Science of the SB RAS, Akademichesky str. 2/4, 634021, Tomsk, Russia |
147 | ″ | schema:name | Institute of Strength Physics and Materials Science of the SB RAS, Akademichesky str. 2/4, 634021, Tomsk, Russia |
148 | ″ | ″ | National research Tomsk state university, Lenin str., 36, 634050, Tomsk, Russia |
149 | ″ | rdf:type | schema:Organization |