The High Cycle Fatigue, Damage Initiation, Damage Propagation and Final Fracture Behavior of Aluminum Alloy 2024 View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

T. S. Srivatsan , Satish Vasudevan , K. Manigandan

ABSTRACT

In this technical paper the results of a study aimed at understanding the high cycle fatigue properties and fracture characteristics of aluminum alloy 2024 is presented and discussed. Specimens of the alloy in the T-8 temper were cyclically deformed over a range of stress amplitudes at ambient temperature and at a stress ratio of 0.1. Specimens of the alloy were taken from the longitudinal orientation of the as-provided plate and cyclically deformed. The influence of alloy temper (T8 versus T3) on cyclic fatigue life under stress amplitude control is briefly discussed. At the ambient test temperature, the macroscopic fracture mode was essentially identical with specific reference to the magnitude of cyclic stress amplitude. The microscopic mechanisms governing cyclic deformation, fatigue life and final fracture behavior are discussed in light of the mutually interactive influences of magnitude of applied stress, intrinsic microstructural effects, deformation characteristics of the alloy microstructure and macroscopic fracture mode. More... »

PAGES

119-137

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-48105-0_9

DOI

http://dx.doi.org/10.1007/978-3-319-48105-0_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052892602


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srivatsan", 
        "givenName": "T. S.", 
        "id": "sg:person.015440524245.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Product Development Engineer [Custom Engineering], Navistar, Inc., 2701 Navistar Drive, 60532, Lisle, IL, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Product Development Engineer [Custom Engineering], Navistar, Inc., 2701 Navistar Drive, 60532, Lisle, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasudevan", 
        "givenName": "Satish", 
        "id": "sg:person.010437267351.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010437267351.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manigandan", 
        "givenName": "K.", 
        "id": "sg:person.010412562231.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412562231.72"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "In this technical paper the results of a study aimed at understanding the high cycle fatigue properties and fracture characteristics of aluminum alloy 2024 is presented and discussed. Specimens of the alloy in the T-8 temper were cyclically deformed over a range of stress amplitudes at ambient temperature and at a stress ratio of 0.1. Specimens of the alloy were taken from the longitudinal orientation of the as-provided plate and cyclically deformed. The influence of alloy temper (T8 versus T3) on cyclic fatigue life under stress amplitude control is briefly discussed. At the ambient test temperature, the macroscopic fracture mode was essentially identical with specific reference to the magnitude of cyclic stress amplitude. The microscopic mechanisms governing cyclic deformation, fatigue life and final fracture behavior are discussed in light of the mutually interactive influences of magnitude of applied stress, intrinsic microstructural effects, deformation characteristics of the alloy microstructure and macroscopic fracture mode.", 
    "editor": [
      {
        "familyName": "Srivatsan", 
        "givenName": "T. S.", 
        "type": "Person"
      }, 
      {
        "familyName": "Imam", 
        "givenName": "M. Ashraf", 
        "type": "Person"
      }, 
      {
        "familyName": "Srinivasan", 
        "givenName": "R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-48105-0_9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-48583-6", 
        "978-3-319-48105-0"
      ], 
      "name": "Fatigue of Materials II", 
      "type": "Book"
    }, 
    "keywords": [
      "final fracture behavior", 
      "macroscopic fracture mode", 
      "aluminum alloy 2024", 
      "fatigue life", 
      "fracture behavior", 
      "fracture mode", 
      "alloy 2024", 
      "stress amplitude", 
      "high cycle fatigue properties", 
      "intrinsic microstructural effects", 
      "cycle fatigue properties", 
      "high cycle fatigue", 
      "cyclic stress amplitude", 
      "cyclic fatigue life", 
      "ambient test temperature", 
      "fatigue properties", 
      "cycle fatigue", 
      "damage initiation", 
      "alloy microstructure", 
      "deformation characteristics", 
      "alloy tempers", 
      "cyclic deformation", 
      "damage propagation", 
      "microstructural effects", 
      "stress ratio", 
      "fracture characteristics", 
      "test temperature", 
      "applied stress", 
      "alloy", 
      "amplitude control", 
      "ambient temperature", 
      "longitudinal orientation", 
      "temper", 
      "technical papers", 
      "microscopic mechanism", 
      "temperature", 
      "microstructure", 
      "deformation", 
      "mode", 
      "behavior", 
      "specimens", 
      "plate", 
      "interactive influence", 
      "influence", 
      "propagation", 
      "characteristics", 
      "amplitude", 
      "fatigue", 
      "properties", 
      "magnitude", 
      "stress", 
      "orientation", 
      "ratio", 
      "range", 
      "results", 
      "effect", 
      "reference", 
      "control", 
      "specific reference", 
      "mechanism", 
      "light", 
      "initiation", 
      "life", 
      "study", 
      "paper", 
      "T-8 temper", 
      "stress amplitude control"
    ], 
    "name": "The High Cycle Fatigue, Damage Initiation, Damage Propagation and Final Fracture Behavior of Aluminum Alloy 2024", 
    "pagination": "119-137", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052892602"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-48105-0_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-48105-0_9", 
      "https://app.dimensions.ai/details/publication/pub.1052892602"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_360.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-48105-0_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48105-0_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48105-0_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48105-0_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48105-0_9'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      23 PREDICATES      93 URIs      86 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-48105-0_9 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc292976ce94d4ce0a96a44dc0346e817
4 schema:datePublished 2013
5 schema:datePublishedReg 2013-01-01
6 schema:description In this technical paper the results of a study aimed at understanding the high cycle fatigue properties and fracture characteristics of aluminum alloy 2024 is presented and discussed. Specimens of the alloy in the T-8 temper were cyclically deformed over a range of stress amplitudes at ambient temperature and at a stress ratio of 0.1. Specimens of the alloy were taken from the longitudinal orientation of the as-provided plate and cyclically deformed. The influence of alloy temper (T8 versus T3) on cyclic fatigue life under stress amplitude control is briefly discussed. At the ambient test temperature, the macroscopic fracture mode was essentially identical with specific reference to the magnitude of cyclic stress amplitude. The microscopic mechanisms governing cyclic deformation, fatigue life and final fracture behavior are discussed in light of the mutually interactive influences of magnitude of applied stress, intrinsic microstructural effects, deformation characteristics of the alloy microstructure and macroscopic fracture mode.
7 schema:editor Nc0cdb42fb8a7451593259364479243ca
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N436235b847a24187850bd13a99a30b4b
12 schema:keywords T-8 temper
13 alloy
14 alloy 2024
15 alloy microstructure
16 alloy tempers
17 aluminum alloy 2024
18 ambient temperature
19 ambient test temperature
20 amplitude
21 amplitude control
22 applied stress
23 behavior
24 characteristics
25 control
26 cycle fatigue
27 cycle fatigue properties
28 cyclic deformation
29 cyclic fatigue life
30 cyclic stress amplitude
31 damage initiation
32 damage propagation
33 deformation
34 deformation characteristics
35 effect
36 fatigue
37 fatigue life
38 fatigue properties
39 final fracture behavior
40 fracture behavior
41 fracture characteristics
42 fracture mode
43 high cycle fatigue
44 high cycle fatigue properties
45 influence
46 initiation
47 interactive influence
48 intrinsic microstructural effects
49 life
50 light
51 longitudinal orientation
52 macroscopic fracture mode
53 magnitude
54 mechanism
55 microscopic mechanism
56 microstructural effects
57 microstructure
58 mode
59 orientation
60 paper
61 plate
62 propagation
63 properties
64 range
65 ratio
66 reference
67 results
68 specific reference
69 specimens
70 stress
71 stress amplitude
72 stress amplitude control
73 stress ratio
74 study
75 technical papers
76 temper
77 temperature
78 test temperature
79 schema:name The High Cycle Fatigue, Damage Initiation, Damage Propagation and Final Fracture Behavior of Aluminum Alloy 2024
80 schema:pagination 119-137
81 schema:productId N107662cdf5894702bee157ae1b401d4b
82 N3e4acdae7f0b4dddb614c01b3ae40e3f
83 schema:publisher N7fb90f07461d4ce89ae6a523e85240e5
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052892602
85 https://doi.org/10.1007/978-3-319-48105-0_9
86 schema:sdDatePublished 2021-11-01T18:57
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher Nb06980c777824fef98698bd49ac6acfb
89 schema:url https://doi.org/10.1007/978-3-319-48105-0_9
90 sgo:license sg:explorer/license/
91 sgo:sdDataset chapters
92 rdf:type schema:Chapter
93 N107662cdf5894702bee157ae1b401d4b schema:name doi
94 schema:value 10.1007/978-3-319-48105-0_9
95 rdf:type schema:PropertyValue
96 N13ed4974818b44ffb1fee22fb22d5af8 schema:familyName Srivatsan
97 schema:givenName T. S.
98 rdf:type schema:Person
99 N24f6471873f54e3ebfae9537dfe4c408 rdf:first N25a2abbb5cb64428b146ced04095f294
100 rdf:rest Nc14f10a9f96b4d139a95852fae528069
101 N25a2abbb5cb64428b146ced04095f294 schema:familyName Imam
102 schema:givenName M. Ashraf
103 rdf:type schema:Person
104 N3e4acdae7f0b4dddb614c01b3ae40e3f schema:name dimensions_id
105 schema:value pub.1052892602
106 rdf:type schema:PropertyValue
107 N436235b847a24187850bd13a99a30b4b schema:isbn 978-3-319-48105-0
108 978-3-319-48583-6
109 schema:name Fatigue of Materials II
110 rdf:type schema:Book
111 N551c7ed880014c978b23feacb997baf1 rdf:first sg:person.010412562231.72
112 rdf:rest rdf:nil
113 N7fb90f07461d4ce89ae6a523e85240e5 schema:name Springer Nature
114 rdf:type schema:Organisation
115 N835b73b2a71f4788902554280b69b418 schema:familyName Srinivasan
116 schema:givenName R.
117 rdf:type schema:Person
118 Naa324255f4194a23bae57c9367bfbf7d rdf:first sg:person.010437267351.93
119 rdf:rest N551c7ed880014c978b23feacb997baf1
120 Nb06980c777824fef98698bd49ac6acfb schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 Nc0cdb42fb8a7451593259364479243ca rdf:first N13ed4974818b44ffb1fee22fb22d5af8
123 rdf:rest N24f6471873f54e3ebfae9537dfe4c408
124 Nc14f10a9f96b4d139a95852fae528069 rdf:first N835b73b2a71f4788902554280b69b418
125 rdf:rest rdf:nil
126 Nc292976ce94d4ce0a96a44dc0346e817 rdf:first sg:person.015440524245.80
127 rdf:rest Naa324255f4194a23bae57c9367bfbf7d
128 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
129 schema:name Engineering
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
132 schema:name Materials Engineering
133 rdf:type schema:DefinedTerm
134 sg:person.010412562231.72 schema:affiliation grid-institutes:grid.265881.0
135 schema:familyName Manigandan
136 schema:givenName K.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412562231.72
138 rdf:type schema:Person
139 sg:person.010437267351.93 schema:affiliation grid-institutes:None
140 schema:familyName Vasudevan
141 schema:givenName Satish
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010437267351.93
143 rdf:type schema:Person
144 sg:person.015440524245.80 schema:affiliation grid-institutes:grid.265881.0
145 schema:familyName Srivatsan
146 schema:givenName T. S.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80
148 rdf:type schema:Person
149 grid-institutes:None schema:alternateName Product Development Engineer [Custom Engineering], Navistar, Inc., 2701 Navistar Drive, 60532, Lisle, IL, USA
150 schema:name Product Development Engineer [Custom Engineering], Navistar, Inc., 2701 Navistar Drive, 60532, Lisle, IL, USA
151 rdf:type schema:Organization
152 grid-institutes:grid.265881.0 schema:alternateName Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA
153 schema:name Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...