The High Cycle Fatigue and Final Fracture Behavior of Alloy Steel 9310 for Use in Performance-Sensitive Applications View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

K. Manigandan , T. S. Srivatsan , T. Quick , A. M. Freborg

ABSTRACT

In this technical paper the results of a recent study aimed at understanding the high cycle fatigue properties and fracture behavior of an alloy steel, a viable candidate for use in performance-critical applications, is presented and briefly discussed. The alloy steel investigated was 9310. The material was evaluated in the as-forged (wrought) and normalized condition. Test specimens of this alloy steel were precision machined and conformed to specifications delineated in the ASTM E8. The as-machined and subsequently polished test samples were cyclically deformed over a range of maximum stress, in the room temperature (T = 25 C), laboratory air environment (Relative Humidity 55 pct), at the load ratios of 0.1 and -1.0. The number of cycles-to-failure was recorded. The specific significance of load ratio on cyclic fatigue life of alloy steel 9310 is presented and differences discussed based on a synergism of the nature of loading, intrinsic microstructural effects, and macroscopic fracture behavior. The fatigue fracture surfaces were examined in a scanning electron microscope to determine the macroscopic fracture mode and to concurrently characterize the intrinsic features on the fatigue fracture surfaces and thus establish the microscopic mechanisms governing failure. The conjoint influence of microstructure, maximum stress and load ratio on cyclic fatigue life and fracture behavior is highlighted. More... »

PAGES

211-232

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-48105-0_16

DOI

http://dx.doi.org/10.1007/978-3-319-48105-0_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022072557


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manigandan", 
        "givenName": "K.", 
        "id": "sg:person.010412562231.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412562231.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srivatsan", 
        "givenName": "T. S.", 
        "id": "sg:person.015440524245.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Geology, The University of Akron, 44325, Akron, Ohio, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Geology, The University of Akron, 44325, Akron, Ohio, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quick", 
        "givenName": "T.", 
        "id": "sg:person.016647363633.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016647363633.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Deformation Control Technology, Inc., 7261 Engle Rd., Suite 105, 44130, Cleveland, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.455449.d", 
          "name": [
            "Deformation Control Technology, Inc., 7261 Engle Rd., Suite 105, 44130, Cleveland, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Freborg", 
        "givenName": "A. M.", 
        "id": "sg:person.013257411351.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013257411351.21"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "In this technical paper the results of a recent study aimed at understanding the high cycle fatigue properties and fracture behavior of an alloy steel, a viable candidate for use in performance-critical applications, is presented and briefly discussed. The alloy steel investigated was 9310. The material was evaluated in the as-forged (wrought) and normalized condition. Test specimens of this alloy steel were precision machined and conformed to specifications delineated in the ASTM E8. The as-machined and subsequently polished test samples were cyclically deformed over a range of maximum stress, in the room temperature (T = 25 C), laboratory air environment (Relative Humidity 55 pct), at the load ratios of 0.1 and -1.0. The number of cycles-to-failure was recorded. The specific significance of load ratio on cyclic fatigue life of alloy steel 9310 is presented and differences discussed based on a synergism of the nature of loading, intrinsic microstructural effects, and macroscopic fracture behavior. The fatigue fracture surfaces were examined in a scanning electron microscope to determine the macroscopic fracture mode and to concurrently characterize the intrinsic features on the fatigue fracture surfaces and thus establish the microscopic mechanisms governing failure. The conjoint influence of microstructure, maximum stress and load ratio on cyclic fatigue life and fracture behavior is highlighted.", 
    "editor": [
      {
        "familyName": "Srivatsan", 
        "givenName": "T. S.", 
        "type": "Person"
      }, 
      {
        "familyName": "Imam", 
        "givenName": "M. Ashraf", 
        "type": "Person"
      }, 
      {
        "familyName": "Srinivasan", 
        "givenName": "R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-48105-0_16", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-48583-6", 
        "978-3-319-48105-0"
      ], 
      "name": "Fatigue of Materials II", 
      "type": "Book"
    }, 
    "keywords": [
      "fatigue fracture surfaces", 
      "fracture behavior", 
      "alloy steel", 
      "load ratio", 
      "cyclic fatigue life", 
      "fatigue life", 
      "fracture surfaces", 
      "maximum stress", 
      "high cycle fatigue properties", 
      "intrinsic microstructural effects", 
      "final fracture behavior", 
      "cycle fatigue properties", 
      "macroscopic fracture mode", 
      "high cycle fatigue", 
      "nature of loading", 
      "macroscopic fracture behavior", 
      "laboratory air environment", 
      "ASTM E8", 
      "cycle fatigue", 
      "fatigue properties", 
      "fracture mode", 
      "scanning electron microscope", 
      "number of cycles", 
      "microstructural effects", 
      "test specimens", 
      "normalized condition", 
      "steel", 
      "air environment", 
      "electron microscope", 
      "conjoint influence", 
      "room temperature", 
      "performance-critical applications", 
      "viable candidate", 
      "test samples", 
      "technical papers", 
      "microscopic mechanism", 
      "surface", 
      "microstructure", 
      "loading", 
      "behavior", 
      "stress", 
      "applications", 
      "ratio", 
      "materials", 
      "temperature", 
      "microscope", 
      "fatigue", 
      "properties", 
      "intrinsic features", 
      "mode", 
      "specimens", 
      "performance-sensitive applications", 
      "influence", 
      "failure", 
      "conditions", 
      "precision", 
      "range", 
      "cycle", 
      "use", 
      "specification", 
      "results", 
      "environment", 
      "candidates", 
      "effect", 
      "specific significance", 
      "features", 
      "samples", 
      "mechanism", 
      "life", 
      "nature", 
      "number", 
      "study", 
      "synergism", 
      "differences", 
      "significance", 
      "Recent studies", 
      "E8", 
      "paper", 
      "polished test samples", 
      "alloy steel 9310", 
      "steel 9310"
    ], 
    "name": "The High Cycle Fatigue and Final Fracture Behavior of Alloy Steel 9310 for Use in Performance-Sensitive Applications", 
    "pagination": "211-232", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022072557"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-48105-0_16"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-48105-0_16", 
      "https://app.dimensions.ai/details/publication/pub.1022072557"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_229.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-48105-0_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48105-0_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48105-0_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48105-0_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-48105-0_16'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      23 PREDICATES      107 URIs      100 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-48105-0_16 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nfb442527c10143d3a8ca88016a2aaf45
4 schema:datePublished 2013
5 schema:datePublishedReg 2013-01-01
6 schema:description In this technical paper the results of a recent study aimed at understanding the high cycle fatigue properties and fracture behavior of an alloy steel, a viable candidate for use in performance-critical applications, is presented and briefly discussed. The alloy steel investigated was 9310. The material was evaluated in the as-forged (wrought) and normalized condition. Test specimens of this alloy steel were precision machined and conformed to specifications delineated in the ASTM E8. The as-machined and subsequently polished test samples were cyclically deformed over a range of maximum stress, in the room temperature (T = 25 C), laboratory air environment (Relative Humidity 55 pct), at the load ratios of 0.1 and -1.0. The number of cycles-to-failure was recorded. The specific significance of load ratio on cyclic fatigue life of alloy steel 9310 is presented and differences discussed based on a synergism of the nature of loading, intrinsic microstructural effects, and macroscopic fracture behavior. The fatigue fracture surfaces were examined in a scanning electron microscope to determine the macroscopic fracture mode and to concurrently characterize the intrinsic features on the fatigue fracture surfaces and thus establish the microscopic mechanisms governing failure. The conjoint influence of microstructure, maximum stress and load ratio on cyclic fatigue life and fracture behavior is highlighted.
7 schema:editor N6aea412c0a1f4e858b1d548fb861a7bd
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nfb5cf60f698140b5ba42938a6423ab7d
12 schema:keywords ASTM E8
13 E8
14 Recent studies
15 air environment
16 alloy steel
17 alloy steel 9310
18 applications
19 behavior
20 candidates
21 conditions
22 conjoint influence
23 cycle
24 cycle fatigue
25 cycle fatigue properties
26 cyclic fatigue life
27 differences
28 effect
29 electron microscope
30 environment
31 failure
32 fatigue
33 fatigue fracture surfaces
34 fatigue life
35 fatigue properties
36 features
37 final fracture behavior
38 fracture behavior
39 fracture mode
40 fracture surfaces
41 high cycle fatigue
42 high cycle fatigue properties
43 influence
44 intrinsic features
45 intrinsic microstructural effects
46 laboratory air environment
47 life
48 load ratio
49 loading
50 macroscopic fracture behavior
51 macroscopic fracture mode
52 materials
53 maximum stress
54 mechanism
55 microscope
56 microscopic mechanism
57 microstructural effects
58 microstructure
59 mode
60 nature
61 nature of loading
62 normalized condition
63 number
64 number of cycles
65 paper
66 performance-critical applications
67 performance-sensitive applications
68 polished test samples
69 precision
70 properties
71 range
72 ratio
73 results
74 room temperature
75 samples
76 scanning electron microscope
77 significance
78 specific significance
79 specification
80 specimens
81 steel
82 steel 9310
83 stress
84 study
85 surface
86 synergism
87 technical papers
88 temperature
89 test samples
90 test specimens
91 use
92 viable candidate
93 schema:name The High Cycle Fatigue and Final Fracture Behavior of Alloy Steel 9310 for Use in Performance-Sensitive Applications
94 schema:pagination 211-232
95 schema:productId N26111e6f258c4577bc114e9273502506
96 N3f4010b7b21f4827887ead82450140a9
97 schema:publisher Ncb0c16b5ec4542d8880a8332ea24fda4
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022072557
99 https://doi.org/10.1007/978-3-319-48105-0_16
100 schema:sdDatePublished 2021-11-01T18:51
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher Nbff395325b2e4fca8de8b8b3308a8d44
103 schema:url https://doi.org/10.1007/978-3-319-48105-0_16
104 sgo:license sg:explorer/license/
105 sgo:sdDataset chapters
106 rdf:type schema:Chapter
107 N1bae2fd74bda4fa58eca3c70e6d2a012 rdf:first N482e036532bf440b82e042da443d4e65
108 rdf:rest Nd22c5196ed104b43b45161fd06d05e24
109 N26111e6f258c4577bc114e9273502506 schema:name doi
110 schema:value 10.1007/978-3-319-48105-0_16
111 rdf:type schema:PropertyValue
112 N3f4010b7b21f4827887ead82450140a9 schema:name dimensions_id
113 schema:value pub.1022072557
114 rdf:type schema:PropertyValue
115 N482e036532bf440b82e042da443d4e65 schema:familyName Imam
116 schema:givenName M. Ashraf
117 rdf:type schema:Person
118 N5ccbe353d93e4c329e9d3cc611c6f16d rdf:first sg:person.013257411351.21
119 rdf:rest rdf:nil
120 N6aea412c0a1f4e858b1d548fb861a7bd rdf:first Nc7349fb636a147bc91e8cf8e54b54e0d
121 rdf:rest N1bae2fd74bda4fa58eca3c70e6d2a012
122 Naa74d1422c88464280a2d375cef56254 rdf:first sg:person.016647363633.11
123 rdf:rest N5ccbe353d93e4c329e9d3cc611c6f16d
124 Nbff395325b2e4fca8de8b8b3308a8d44 schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 Nc7349fb636a147bc91e8cf8e54b54e0d schema:familyName Srivatsan
127 schema:givenName T. S.
128 rdf:type schema:Person
129 Ncb0c16b5ec4542d8880a8332ea24fda4 schema:name Springer Nature
130 rdf:type schema:Organisation
131 Nd22c5196ed104b43b45161fd06d05e24 rdf:first Ne160043fcb174bf295481e0c9bc83db5
132 rdf:rest rdf:nil
133 Ne160043fcb174bf295481e0c9bc83db5 schema:familyName Srinivasan
134 schema:givenName R.
135 rdf:type schema:Person
136 Nfa49a4e6acbc4354bf07d4436db7b4d4 rdf:first sg:person.015440524245.80
137 rdf:rest Naa74d1422c88464280a2d375cef56254
138 Nfb442527c10143d3a8ca88016a2aaf45 rdf:first sg:person.010412562231.72
139 rdf:rest Nfa49a4e6acbc4354bf07d4436db7b4d4
140 Nfb5cf60f698140b5ba42938a6423ab7d schema:isbn 978-3-319-48105-0
141 978-3-319-48583-6
142 schema:name Fatigue of Materials II
143 rdf:type schema:Book
144 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
145 schema:name Engineering
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
148 schema:name Materials Engineering
149 rdf:type schema:DefinedTerm
150 sg:person.010412562231.72 schema:affiliation grid-institutes:grid.265881.0
151 schema:familyName Manigandan
152 schema:givenName K.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412562231.72
154 rdf:type schema:Person
155 sg:person.013257411351.21 schema:affiliation grid-institutes:grid.455449.d
156 schema:familyName Freborg
157 schema:givenName A. M.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013257411351.21
159 rdf:type schema:Person
160 sg:person.015440524245.80 schema:affiliation grid-institutes:grid.265881.0
161 schema:familyName Srivatsan
162 schema:givenName T. S.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80
164 rdf:type schema:Person
165 sg:person.016647363633.11 schema:affiliation grid-institutes:grid.265881.0
166 schema:familyName Quick
167 schema:givenName T.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016647363633.11
169 rdf:type schema:Person
170 grid-institutes:grid.265881.0 schema:alternateName Department of Geology, The University of Akron, 44325, Akron, Ohio, USA
171 Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA
172 schema:name Department of Geology, The University of Akron, 44325, Akron, Ohio, USA
173 Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, Ohio, USA
174 rdf:type schema:Organization
175 grid-institutes:grid.455449.d schema:alternateName Deformation Control Technology, Inc., 7261 Engle Rd., Suite 105, 44130, Cleveland, OH, USA
176 schema:name Deformation Control Technology, Inc., 7261 Engle Rd., Suite 105, 44130, Cleveland, OH, USA
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...