Learning Fuzzy Models with a SAX-based Partitioning for Simulated Seizure Recognition View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

Paula Vergara , José Ramón Villar , Enrique de la Cal , Manuel Menéndez , Javier Sedano

ABSTRACT

Wearable devices are currently used in researches related with the detection of human activities and the anamnesis of illnesses. Recent studies focused on the detection of simulated epileptic seizures have found that Fuzzy Rule Base Classifiers (FRBC) can be learnt with Ant Colony Systems (ACS) to efficiently deal with this problem. However, the computational requirements for obtaining these models is relatively high, which suggests that an alternative for reducing the learning cost would be rather interesting. Therefore, this study focuses on reducing the complexity of the model by using a discretization technique, more specifically, the discretization proposed in the SAX Time Series (TS) representation. Therefore, the very simple discretization method based on the probability distribution of the values in the domain is used together with the AntMiner+ and a Pittsburg FRBC learning algorithm using ACS. The proposal have been tested with a realistic data set gathered with participants following a very strict protocol for simulating epileptic seizures, each participant using a wearable device including tri-axial accelerometers placed on the dominant wrist. The experimentation shows that the discretization method has clearly improved previous published results. In the case of Pittsburg learning, the generalization capabilities of the models have been greatly enhanced, while the models learned with this partitioning and the AntMiner+ have outperformed all the models in the comparison. These results represent a promising starting point for the detection of epileptic seizures and will be tested with patients in their own environment: it is expected to start gathering this data during the last quarter of this year. More... »

PAGES

20-30

References to SciGraph publications

Book

TITLE

International Joint Conference SOCO’16-CISIS’16-ICEUTE’16

ISBN

978-3-319-47363-5
978-3-319-47364-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-47364-2_3

DOI

http://dx.doi.org/10.1007/978-3-319-47364-2_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084909254


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "University of Oviedo"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vergara", 
        "givenName": "Paula", 
        "id": "sg:person.010410676561.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010410676561.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "University of Oviedo"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Villar", 
        "givenName": "Jos\u00e9 Ram\u00f3n", 
        "id": "sg:person.015655732472.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015655732472.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "University of Oviedo"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de la Cal", 
        "givenName": "Enrique", 
        "id": "sg:person.016056436767.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016056436767.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "University of Oviedo"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Men\u00e9ndez", 
        "givenName": "Manuel", 
        "id": "sg:person.01216654113.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216654113.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Instituto Tecnol\u00f3gico de Castilla y Le\u00f3n"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sedano", 
        "givenName": "Javier", 
        "id": "sg:person.012345130667.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012345130667.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/882082.882086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003687047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-010-5216-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005721699", 
          "https://doi.org/10.1007/s10994-010-5216-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-010-5216-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005721699", 
          "https://doi.org/10.1007/s10994-010-5216-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2015.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013530392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1401890.1401966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020303326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2010.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023432348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-32034-2_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035094744", 
          "https://doi.org/10.1007/978-3-319-32034-2_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-739x(00)00043-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037203471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/106454606775186400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044393406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eplepsyres.2011.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051162129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470400531.eorms0030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053044724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2008.0023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4235.585892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061171982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2002.802452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2006.890229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129065714500361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062899424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129065716500374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062899509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972795.41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088800267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iat.2003.1241052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093716840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/innovations.2015.7381552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094185474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/4177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098876353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4018/978-1-93070-825-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099315806"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "Wearable devices are currently used in researches related with the detection of human activities and the anamnesis of illnesses. Recent studies focused on the detection of simulated epileptic seizures have found that Fuzzy Rule Base Classifiers (FRBC) can be learnt with Ant Colony Systems (ACS) to efficiently deal with this problem. However, the computational requirements for obtaining these models is relatively high, which suggests that an alternative for reducing the learning cost would be rather interesting. Therefore, this study focuses on reducing the complexity of the model by using a discretization technique, more specifically, the discretization proposed in the SAX Time Series (TS) representation. Therefore, the very simple discretization method based on the probability distribution of the values in the domain is used together with the AntMiner+ and a Pittsburg FRBC learning algorithm using ACS. The proposal have been tested with a realistic data set gathered with participants following a very strict protocol for simulating epileptic seizures, each participant using a wearable device including tri-axial accelerometers placed on the dominant wrist. The experimentation shows that the discretization method has clearly improved previous published results. In the case of Pittsburg learning, the generalization capabilities of the models have been greatly enhanced, while the models learned with this partitioning and the AntMiner+ have outperformed all the models in the comparison. These results represent a promising starting point for the detection of epileptic seizures and will be tested with patients in their own environment: it is expected to start gathering this data during the last quarter of this year.", 
    "editor": [
      {
        "familyName": "Gra\u00f1a", 
        "givenName": "Manuel", 
        "type": "Person"
      }, 
      {
        "familyName": "L\u00f3pez-Guede", 
        "givenName": "Jos\u00e9 Manuel", 
        "type": "Person"
      }, 
      {
        "familyName": "Etxaniz", 
        "givenName": "Oier", 
        "type": "Person"
      }, 
      {
        "familyName": "Herrero", 
        "givenName": "\u00c1lvaro", 
        "type": "Person"
      }, 
      {
        "familyName": "Quinti\u00e1n", 
        "givenName": "H\u00e9ctor", 
        "type": "Person"
      }, 
      {
        "familyName": "Corchado", 
        "givenName": "Emilio", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-47364-2_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-47363-5", 
        "978-3-319-47364-2"
      ], 
      "name": "International Joint Conference SOCO\u201916-CISIS\u201916-ICEUTE\u201916", 
      "type": "Book"
    }, 
    "name": "Learning Fuzzy Models with a SAX-based Partitioning for Simulated Seizure Recognition", 
    "pagination": "20-30", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-47364-2_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8c391bb2edf42de3f256f2b04f18aa842161b517924bf6db3ae7250806f75287"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084909254"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-47364-2_3", 
      "https://app.dimensions.ai/details/publication/pub.1084909254"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000279.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-47364-2_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-47364-2_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-47364-2_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-47364-2_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-47364-2_3'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      23 PREDICATES      48 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-47364-2_3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ndc627a325b8046e39a32a2b26325d7d4
4 schema:citation sg:pub.10.1007/978-3-319-32034-2_22
5 sg:pub.10.1007/s10994-010-5216-5
6 https://doi.org/10.1002/9780470400531.eorms0030
7 https://doi.org/10.1016/j.engappai.2010.09.007
8 https://doi.org/10.1016/j.eplepsyres.2011.02.010
9 https://doi.org/10.1016/j.knosys.2015.01.013
10 https://doi.org/10.1016/s0167-739x(00)00043-1
11 https://doi.org/10.1089/cmb.2008.0023
12 https://doi.org/10.1109/4235.585892
13 https://doi.org/10.1109/iat.2003.1241052
14 https://doi.org/10.1109/innovations.2015.7381552
15 https://doi.org/10.1109/tevc.2002.802452
16 https://doi.org/10.1109/tevc.2006.890229
17 https://doi.org/10.1137/1.9781611972795.41
18 https://doi.org/10.1142/4177
19 https://doi.org/10.1142/s0129065714500361
20 https://doi.org/10.1142/s0129065716500374
21 https://doi.org/10.1145/1401890.1401966
22 https://doi.org/10.1145/882082.882086
23 https://doi.org/10.1162/106454606775186400
24 https://doi.org/10.4018/978-1-93070-825-9
25 schema:datePublished 2017
26 schema:datePublishedReg 2017-01-01
27 schema:description Wearable devices are currently used in researches related with the detection of human activities and the anamnesis of illnesses. Recent studies focused on the detection of simulated epileptic seizures have found that Fuzzy Rule Base Classifiers (FRBC) can be learnt with Ant Colony Systems (ACS) to efficiently deal with this problem. However, the computational requirements for obtaining these models is relatively high, which suggests that an alternative for reducing the learning cost would be rather interesting. Therefore, this study focuses on reducing the complexity of the model by using a discretization technique, more specifically, the discretization proposed in the SAX Time Series (TS) representation. Therefore, the very simple discretization method based on the probability distribution of the values in the domain is used together with the AntMiner+ and a Pittsburg FRBC learning algorithm using ACS. The proposal have been tested with a realistic data set gathered with participants following a very strict protocol for simulating epileptic seizures, each participant using a wearable device including tri-axial accelerometers placed on the dominant wrist. The experimentation shows that the discretization method has clearly improved previous published results. In the case of Pittsburg learning, the generalization capabilities of the models have been greatly enhanced, while the models learned with this partitioning and the AntMiner+ have outperformed all the models in the comparison. These results represent a promising starting point for the detection of epileptic seizures and will be tested with patients in their own environment: it is expected to start gathering this data during the last quarter of this year.
28 schema:editor N80afde0b54584d80b219a16b3dad9980
29 schema:genre chapter
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf Na579cc49a0694f37aa10c472347395d3
33 schema:name Learning Fuzzy Models with a SAX-based Partitioning for Simulated Seizure Recognition
34 schema:pagination 20-30
35 schema:productId N7e4c020ee4cd4578a95a8d7bb289e0a8
36 N8952ae62118149c1af85994ce024b58a
37 Ne860b6c550594ae3be32acae24e6598b
38 schema:publisher N93a53d289d45423b84b375dd19f8b725
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084909254
40 https://doi.org/10.1007/978-3-319-47364-2_3
41 schema:sdDatePublished 2019-04-15T13:32
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N3130c942ae2349a589236e835ecb37b7
44 schema:url http://link.springer.com/10.1007/978-3-319-47364-2_3
45 sgo:license sg:explorer/license/
46 sgo:sdDataset chapters
47 rdf:type schema:Chapter
48 N27be08b49a7d4569a12558e8125a2df0 schema:familyName Herrero
49 schema:givenName Álvaro
50 rdf:type schema:Person
51 N3130c942ae2349a589236e835ecb37b7 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N39f8505c7d0e46e8af32bd30b3152668 rdf:first N27be08b49a7d4569a12558e8125a2df0
54 rdf:rest Na6d52e1fa8d94a89bf4e3a8a35471b42
55 N3ac9843970dc4417996ad4e9de6bf6f9 rdf:first Nae7d518ebcfd4984932bb56fae29f79c
56 rdf:rest rdf:nil
57 N3e235c78882b4956b9f16f5789c78a0e rdf:first Nfe9ea6c6bbf54510ab4b20a9f1acecba
58 rdf:rest Ne0b1d53928b0452f87396b641aed331a
59 N3feec03e67a64401bd04984d9d90b08f rdf:first sg:person.016056436767.91
60 rdf:rest Nac20dd170d404275b17f3c01f6cf844d
61 N437351ca2b8d4a52abe4b19a8f892d08 schema:familyName Graña
62 schema:givenName Manuel
63 rdf:type schema:Person
64 N7e4c020ee4cd4578a95a8d7bb289e0a8 schema:name dimensions_id
65 schema:value pub.1084909254
66 rdf:type schema:PropertyValue
67 N80afde0b54584d80b219a16b3dad9980 rdf:first N437351ca2b8d4a52abe4b19a8f892d08
68 rdf:rest N3e235c78882b4956b9f16f5789c78a0e
69 N8952ae62118149c1af85994ce024b58a schema:name doi
70 schema:value 10.1007/978-3-319-47364-2_3
71 rdf:type schema:PropertyValue
72 N8d100fc84b5a4787b6a6cf1c5f7190a7 schema:familyName Etxaniz
73 schema:givenName Oier
74 rdf:type schema:Person
75 N8d1f0b6a7dc84b95a915b32848ad4cf9 schema:familyName Quintián
76 schema:givenName Héctor
77 rdf:type schema:Person
78 N93a53d289d45423b84b375dd19f8b725 schema:location Cham
79 schema:name Springer International Publishing
80 rdf:type schema:Organisation
81 Na579cc49a0694f37aa10c472347395d3 schema:isbn 978-3-319-47363-5
82 978-3-319-47364-2
83 schema:name International Joint Conference SOCO’16-CISIS’16-ICEUTE’16
84 rdf:type schema:Book
85 Na6d52e1fa8d94a89bf4e3a8a35471b42 rdf:first N8d1f0b6a7dc84b95a915b32848ad4cf9
86 rdf:rest N3ac9843970dc4417996ad4e9de6bf6f9
87 Nac20dd170d404275b17f3c01f6cf844d rdf:first sg:person.01216654113.76
88 rdf:rest Nb80fcf40251e4fae83673aa2cb3eae95
89 Nae7d518ebcfd4984932bb56fae29f79c schema:familyName Corchado
90 schema:givenName Emilio
91 rdf:type schema:Person
92 Nb80fcf40251e4fae83673aa2cb3eae95 rdf:first sg:person.012345130667.82
93 rdf:rest rdf:nil
94 Nb94a55608b53434eadaed45188f537ce rdf:first sg:person.015655732472.57
95 rdf:rest N3feec03e67a64401bd04984d9d90b08f
96 Ndc627a325b8046e39a32a2b26325d7d4 rdf:first sg:person.010410676561.23
97 rdf:rest Nb94a55608b53434eadaed45188f537ce
98 Ndff43d7c383b42968ac257e61fdc88b3 schema:name Instituto Tecnológico de Castilla y León
99 rdf:type schema:Organization
100 Ne0b1d53928b0452f87396b641aed331a rdf:first N8d100fc84b5a4787b6a6cf1c5f7190a7
101 rdf:rest N39f8505c7d0e46e8af32bd30b3152668
102 Ne860b6c550594ae3be32acae24e6598b schema:name readcube_id
103 schema:value 8c391bb2edf42de3f256f2b04f18aa842161b517924bf6db3ae7250806f75287
104 rdf:type schema:PropertyValue
105 Nfe9ea6c6bbf54510ab4b20a9f1acecba schema:familyName López-Guede
106 schema:givenName José Manuel
107 rdf:type schema:Person
108 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
109 schema:name Information and Computing Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
112 schema:name Artificial Intelligence and Image Processing
113 rdf:type schema:DefinedTerm
114 sg:person.010410676561.23 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
115 schema:familyName Vergara
116 schema:givenName Paula
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010410676561.23
118 rdf:type schema:Person
119 sg:person.01216654113.76 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
120 schema:familyName Menéndez
121 schema:givenName Manuel
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216654113.76
123 rdf:type schema:Person
124 sg:person.012345130667.82 schema:affiliation Ndff43d7c383b42968ac257e61fdc88b3
125 schema:familyName Sedano
126 schema:givenName Javier
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012345130667.82
128 rdf:type schema:Person
129 sg:person.015655732472.57 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
130 schema:familyName Villar
131 schema:givenName José Ramón
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015655732472.57
133 rdf:type schema:Person
134 sg:person.016056436767.91 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
135 schema:familyName de la Cal
136 schema:givenName Enrique
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016056436767.91
138 rdf:type schema:Person
139 sg:pub.10.1007/978-3-319-32034-2_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035094744
140 https://doi.org/10.1007/978-3-319-32034-2_22
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s10994-010-5216-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005721699
143 https://doi.org/10.1007/s10994-010-5216-5
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1002/9780470400531.eorms0030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053044724
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.engappai.2010.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023432348
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.eplepsyres.2011.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051162129
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.knosys.2015.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013530392
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s0167-739x(00)00043-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037203471
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1089/cmb.2008.0023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245666
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/4235.585892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061171982
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/iat.2003.1241052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093716840
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/innovations.2015.7381552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094185474
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/tevc.2002.802452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604557
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/tevc.2006.890229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604779
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1137/1.9781611972795.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088800267
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1142/4177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098876353
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1142/s0129065714500361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062899424
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1142/s0129065716500374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062899509
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1145/1401890.1401966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020303326
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1145/882082.882086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003687047
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1162/106454606775186400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044393406
180 rdf:type schema:CreativeWork
181 https://doi.org/10.4018/978-1-93070-825-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099315806
182 rdf:type schema:CreativeWork
183 https://www.grid.ac/institutes/grid.10863.3c schema:alternateName University of Oviedo
184 schema:name University of Oviedo
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...