Sparse Coding Based Skin Lesion Segmentation Using Dynamic Rule-Based Refinement View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Behzad Bozorgtabar , Mani Abedini , Rahil Garnavi

ABSTRACT

This paper proposes an unsupervised skin lesion segmentation method for dermoscopy images by exploiting the contextual information of skin image at the superpixel level. In particular, a Laplacian sparse coding is presented to evaluate the probabilities of the skin image pixels to delineate lesion border. Moreover, a new rule-based smoothing strategy is proposed as the lesion segmentation refinement procedure. Finally, a multi-scale superpixel segmentation of the skin image is provided to handle size variation of the lesion in order to improve the accuracy of the detected border. Experiments conducted on two datasets show the superiority of our proposed method over several state-of-the-art skin segmentation methods. More... »

PAGES

254-261

Book

TITLE

Machine Learning in Medical Imaging

ISBN

978-3-319-47156-3
978-3-319-47157-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-47157-0_31

DOI

http://dx.doi.org/10.1007/978-3-319-47157-0_31

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084903517


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Research - Australia", 
          "id": "https://www.grid.ac/institutes/grid.481553.e", 
          "name": [
            "IBM Research - Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bozorgtabar", 
        "givenName": "Behzad", 
        "id": "sg:person.013213672445.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013213672445.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Australia", 
          "id": "https://www.grid.ac/institutes/grid.481553.e", 
          "name": [
            "IBM Research - Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abedini", 
        "givenName": "Mani", 
        "id": "sg:person.01151036037.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151036037.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Australia", 
          "id": "https://www.grid.ac/institutes/grid.481553.e", 
          "name": [
            "IBM Research - Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garnavi", 
        "givenName": "Rahil", 
        "id": "sg:person.01337507642.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337507642.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1117/1.1631315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006606685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0846.2008.00301.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018679604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1978.4310039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024097996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0846.2005.00092.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029374191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1979.4310076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042805607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compmedimag.2010.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044782305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compmedimag.2010.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044782305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstsp.2008.2011119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061337816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstsp.2008.2011156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061337817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2005.857252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2008.2002304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2012.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2015.7319025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079205563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2013.413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093996075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7298886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094182738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ivcnz.2010.6148845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094624892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7298798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095750564"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "This paper proposes an unsupervised skin lesion segmentation method for dermoscopy images by exploiting the contextual information of skin image at the superpixel level. In particular, a Laplacian sparse coding is presented to evaluate the probabilities of the skin image pixels to delineate lesion border. Moreover, a new rule-based smoothing strategy is proposed as the lesion segmentation refinement procedure. Finally, a multi-scale superpixel segmentation of the skin image is provided to handle size variation of the lesion in order to improve the accuracy of the detected border. Experiments conducted on two datasets show the superiority of our proposed method over several state-of-the-art skin segmentation methods.", 
    "editor": [
      {
        "familyName": "Wang", 
        "givenName": "Li", 
        "type": "Person"
      }, 
      {
        "familyName": "Adeli", 
        "givenName": "Ehsan", 
        "type": "Person"
      }, 
      {
        "familyName": "Wang", 
        "givenName": "Qian", 
        "type": "Person"
      }, 
      {
        "familyName": "Shi", 
        "givenName": "Yinghuan", 
        "type": "Person"
      }, 
      {
        "familyName": "Suk", 
        "givenName": "Heung-Il", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-47157-0_31", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-47156-3", 
        "978-3-319-47157-0"
      ], 
      "name": "Machine Learning in Medical Imaging", 
      "type": "Book"
    }, 
    "name": "Sparse Coding Based Skin Lesion Segmentation Using Dynamic Rule-Based Refinement", 
    "pagination": "254-261", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-47157-0_31"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "583945b45915b0e371634227fd5067381130ab1cff158bff86990d5b670644f3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084903517"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-47157-0_31", 
      "https://app.dimensions.ai/details/publication/pub.1084903517"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000279.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-47157-0_31"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-47157-0_31'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-47157-0_31'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-47157-0_31'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-47157-0_31'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      23 PREDICATES      43 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-47157-0_31 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nbeedc7e2d59841fcb5e1c83daf72f834
4 schema:citation https://doi.org/10.1016/j.compmedimag.2010.08.001
5 https://doi.org/10.1109/cvpr.2015.7298798
6 https://doi.org/10.1109/cvpr.2015.7298886
7 https://doi.org/10.1109/embc.2015.7319025
8 https://doi.org/10.1109/iccv.2013.413
9 https://doi.org/10.1109/ivcnz.2010.6148845
10 https://doi.org/10.1109/jstsp.2008.2011119
11 https://doi.org/10.1109/jstsp.2008.2011156
12 https://doi.org/10.1109/tip.2005.857252
13 https://doi.org/10.1109/tip.2008.2002304
14 https://doi.org/10.1109/tpami.2012.120
15 https://doi.org/10.1109/tsmc.1978.4310039
16 https://doi.org/10.1109/tsmc.1979.4310076
17 https://doi.org/10.1111/j.1600-0846.2005.00092.x
18 https://doi.org/10.1111/j.1600-0846.2008.00301.x
19 https://doi.org/10.1117/1.1631315
20 schema:datePublished 2016
21 schema:datePublishedReg 2016-01-01
22 schema:description This paper proposes an unsupervised skin lesion segmentation method for dermoscopy images by exploiting the contextual information of skin image at the superpixel level. In particular, a Laplacian sparse coding is presented to evaluate the probabilities of the skin image pixels to delineate lesion border. Moreover, a new rule-based smoothing strategy is proposed as the lesion segmentation refinement procedure. Finally, a multi-scale superpixel segmentation of the skin image is provided to handle size variation of the lesion in order to improve the accuracy of the detected border. Experiments conducted on two datasets show the superiority of our proposed method over several state-of-the-art skin segmentation methods.
23 schema:editor Na7f0385e90b94e8eb81aa002e013eb08
24 schema:genre chapter
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf Nf10e9783ef88436ba7a78f611ce642a7
28 schema:name Sparse Coding Based Skin Lesion Segmentation Using Dynamic Rule-Based Refinement
29 schema:pagination 254-261
30 schema:productId N55c843b227814eccb27c3c4cef8ba222
31 Nbabf5a005c6e4252a54aea6e7cc24767
32 Nc3500fb985314811875d1de4a326b630
33 schema:publisher N41189085753849968577470fc32f1a93
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084903517
35 https://doi.org/10.1007/978-3-319-47157-0_31
36 schema:sdDatePublished 2019-04-15T14:29
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Nb770ae873aae44b1934ce314375a7e5f
39 schema:url http://link.springer.com/10.1007/978-3-319-47157-0_31
40 sgo:license sg:explorer/license/
41 sgo:sdDataset chapters
42 rdf:type schema:Chapter
43 N1cfb2e4816a74aba92f85161058c4ced rdf:first Nd49e7ce48a3941d19e08241c42f8814d
44 rdf:rest rdf:nil
45 N2fd13976a9cf494ca88bde8b547a0591 schema:familyName Wang
46 schema:givenName Li
47 rdf:type schema:Person
48 N41189085753849968577470fc32f1a93 schema:location Cham
49 schema:name Springer International Publishing
50 rdf:type schema:Organisation
51 N55c843b227814eccb27c3c4cef8ba222 schema:name doi
52 schema:value 10.1007/978-3-319-47157-0_31
53 rdf:type schema:PropertyValue
54 N6b1442dc5dc14e259ed036e6916b16b4 rdf:first Nbfcc2cbcdff942138ecd4cc433b3a39e
55 rdf:rest Nee21aa6374fd4d90adbaf0f637e22f46
56 N896669c06ba24b2b848aa9f121ba7842 rdf:first Nea24d38bb6e34e90a08babc460e9e148
57 rdf:rest N1cfb2e4816a74aba92f85161058c4ced
58 Na032b521547d48fe9f47150ab79835e8 rdf:first sg:person.01151036037.09
59 rdf:rest Nf719c5903cf64b2fb68669bfd5cb1c4b
60 Na7f0385e90b94e8eb81aa002e013eb08 rdf:first N2fd13976a9cf494ca88bde8b547a0591
61 rdf:rest N6b1442dc5dc14e259ed036e6916b16b4
62 Nb770ae873aae44b1934ce314375a7e5f schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Nbabf5a005c6e4252a54aea6e7cc24767 schema:name dimensions_id
65 schema:value pub.1084903517
66 rdf:type schema:PropertyValue
67 Nbeedc7e2d59841fcb5e1c83daf72f834 rdf:first sg:person.013213672445.40
68 rdf:rest Na032b521547d48fe9f47150ab79835e8
69 Nbfcc2cbcdff942138ecd4cc433b3a39e schema:familyName Adeli
70 schema:givenName Ehsan
71 rdf:type schema:Person
72 Nc3500fb985314811875d1de4a326b630 schema:name readcube_id
73 schema:value 583945b45915b0e371634227fd5067381130ab1cff158bff86990d5b670644f3
74 rdf:type schema:PropertyValue
75 Nd08e8665362d449b9a0d28fa58fce1f0 schema:familyName Wang
76 schema:givenName Qian
77 rdf:type schema:Person
78 Nd49e7ce48a3941d19e08241c42f8814d schema:familyName Suk
79 schema:givenName Heung-Il
80 rdf:type schema:Person
81 Nea24d38bb6e34e90a08babc460e9e148 schema:familyName Shi
82 schema:givenName Yinghuan
83 rdf:type schema:Person
84 Nee21aa6374fd4d90adbaf0f637e22f46 rdf:first Nd08e8665362d449b9a0d28fa58fce1f0
85 rdf:rest N896669c06ba24b2b848aa9f121ba7842
86 Nf10e9783ef88436ba7a78f611ce642a7 schema:isbn 978-3-319-47156-3
87 978-3-319-47157-0
88 schema:name Machine Learning in Medical Imaging
89 rdf:type schema:Book
90 Nf719c5903cf64b2fb68669bfd5cb1c4b rdf:first sg:person.01337507642.38
91 rdf:rest rdf:nil
92 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
93 schema:name Information and Computing Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
96 schema:name Artificial Intelligence and Image Processing
97 rdf:type schema:DefinedTerm
98 sg:person.01151036037.09 schema:affiliation https://www.grid.ac/institutes/grid.481553.e
99 schema:familyName Abedini
100 schema:givenName Mani
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151036037.09
102 rdf:type schema:Person
103 sg:person.013213672445.40 schema:affiliation https://www.grid.ac/institutes/grid.481553.e
104 schema:familyName Bozorgtabar
105 schema:givenName Behzad
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013213672445.40
107 rdf:type schema:Person
108 sg:person.01337507642.38 schema:affiliation https://www.grid.ac/institutes/grid.481553.e
109 schema:familyName Garnavi
110 schema:givenName Rahil
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337507642.38
112 rdf:type schema:Person
113 https://doi.org/10.1016/j.compmedimag.2010.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044782305
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/cvpr.2015.7298798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095750564
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/cvpr.2015.7298886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094182738
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/embc.2015.7319025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079205563
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/iccv.2013.413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093996075
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/ivcnz.2010.6148845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094624892
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/jstsp.2008.2011119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061337816
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/jstsp.2008.2011156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061337817
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/tip.2005.857252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641243
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/tip.2008.2002304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641939
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/tpami.2012.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744236
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/tsmc.1978.4310039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024097996
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/tsmc.1979.4310076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042805607
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1111/j.1600-0846.2005.00092.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029374191
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1111/j.1600-0846.2008.00301.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018679604
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1117/1.1631315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006606685
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.481553.e schema:alternateName IBM Research - Australia
146 schema:name IBM Research - Australia
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...