Multi-label Deep Regression and Unordered Pooling for Holistic Interstitial Lung Disease Pattern Detection View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Mingchen Gao , Ziyue Xu , Le Lu , Adam P. Harrison , Ronald M. Summers , Daniel J. Mollura

ABSTRACT

Holistically detecting interstitial lung disease (ILD) patterns from CT images is challenging yet clinically important. Unfortunately, most existing solutions rely on manually provided regions of interest, limiting their clinical usefulness. In addition, no work has yet focused on predicting more than one ILD from the same CT slice, despite the frequency of such occurrences. To address these limitations, we propose two variations of multi-label deep convolutional neural networks (CNNs). The first uses a deep CNN to detect the presence of multiple ILDs using a regression-based loss function. Our second variant further improves performance, using spatially invariant Fisher Vector encoding of the CNN feature activations. We test our algorithms on a dataset of 533 patients using five-fold cross-validation, achieving high area-under-curve (AUC) scores of 0.982, 0.972, 0.893 and 0.993 for Ground Glass, Reticular, Honeycomb and Emphysema, respectively. As such, our work represents an important step forward in providing clinically effective ILD detection. More... »

PAGES

147-155

Book

TITLE

Machine Learning in Medical Imaging

ISBN

978-3-319-47156-3
978-3-319-47157-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-47157-0_18

DOI

http://dx.doi.org/10.1007/978-3-319-47157-0_18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084901352


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "National Institutes of Health (NIH)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Mingchen", 
        "id": "sg:person.01222313370.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222313370.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "National Institutes of Health (NIH)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Ziyue", 
        "id": "sg:person.0705635036.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705635036.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "National Institutes of Health (NIH)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Le", 
        "id": "sg:person.01353423536.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "National Institutes of Health (NIH)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harrison", 
        "givenName": "Adam P.", 
        "id": "sg:person.015650075713.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015650075713.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "National Institutes of Health (NIH)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Summers", 
        "givenName": "Ronald M.", 
        "id": "sg:person.011331054577.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "National Institutes of Health (NIH)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mollura", 
        "givenName": "Daniel J.", 
        "id": "sg:person.01312676340.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312676340.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/21681163.2015.1124249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005532781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-24553-9_82", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023585960", 
          "https://doi.org/10.1007/978-3-319-24553-9_82"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10584-0_26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032984348", 
          "https://doi.org/10.1007/978-3-319-10584-0_26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compmedimag.2011.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038124924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2733373.2807412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039662878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10470-6_73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039716664", 
          "https://doi.org/10.1007/978-3-319-10470-6_73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15561-1_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045344996", 
          "https://doi.org/10.1007/978-3-642-15561-1_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15561-1_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045344996", 
          "https://doi.org/10.1007/978-3-642-15561-1_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-015-0872-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052902331", 
          "https://doi.org/10.1007/s11263-015-0872-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-015-0872-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052902331", 
          "https://doi.org/10.1007/s11263-015-0872-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2013.2241448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2015.2393954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2016.2526687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2016.2535865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7298643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093985706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2016.7493497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094994570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5244/c.28.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099426737"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "Holistically detecting interstitial lung disease (ILD) patterns from CT images is challenging yet clinically important. Unfortunately, most existing solutions rely on manually provided regions of interest, limiting their clinical usefulness. In addition, no work has yet focused on predicting more than one ILD from the same CT slice, despite the frequency of such occurrences. To address these limitations, we propose two variations of multi-label deep convolutional neural networks (CNNs). The first uses a deep CNN to detect the presence of multiple ILDs using a regression-based loss function. Our second variant further improves performance, using spatially invariant Fisher Vector encoding of the CNN feature activations. We test our algorithms on a dataset of 533 patients using five-fold cross-validation, achieving high area-under-curve (AUC) scores of 0.982, 0.972, 0.893 and 0.993 for Ground Glass, Reticular, Honeycomb and Emphysema, respectively. As such, our work represents an important step forward in providing clinically effective ILD detection.", 
    "editor": [
      {
        "familyName": "Wang", 
        "givenName": "Li", 
        "type": "Person"
      }, 
      {
        "familyName": "Adeli", 
        "givenName": "Ehsan", 
        "type": "Person"
      }, 
      {
        "familyName": "Wang", 
        "givenName": "Qian", 
        "type": "Person"
      }, 
      {
        "familyName": "Shi", 
        "givenName": "Yinghuan", 
        "type": "Person"
      }, 
      {
        "familyName": "Suk", 
        "givenName": "Heung-Il", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-47157-0_18", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-47156-3", 
        "978-3-319-47157-0"
      ], 
      "name": "Machine Learning in Medical Imaging", 
      "type": "Book"
    }, 
    "name": "Multi-label Deep Regression and Unordered Pooling for Holistic Interstitial Lung Disease Pattern Detection", 
    "pagination": "147-155", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-47157-0_18"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "43bf8a20f8126d317a6b38e715cdfec55841f71e2c77683ed89253a32a6fc2dc"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084901352"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-47157-0_18", 
      "https://app.dimensions.ai/details/publication/pub.1084901352"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000279.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-47157-0_18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-47157-0_18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-47157-0_18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-47157-0_18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-47157-0_18'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      23 PREDICATES      42 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-47157-0_18 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N55eab1396af14ddca19cbdfe5c5e59c0
4 schema:citation sg:pub.10.1007/978-3-319-10470-6_73
5 sg:pub.10.1007/978-3-319-10584-0_26
6 sg:pub.10.1007/978-3-319-24553-9_82
7 sg:pub.10.1007/978-3-642-15561-1_11
8 sg:pub.10.1007/s11263-015-0872-3
9 https://doi.org/10.1016/j.compmedimag.2011.07.003
10 https://doi.org/10.1080/21681163.2015.1124249
11 https://doi.org/10.1109/cvpr.2015.7298643
12 https://doi.org/10.1109/isbi.2016.7493497
13 https://doi.org/10.1109/tmi.2013.2241448
14 https://doi.org/10.1109/tmi.2015.2393954
15 https://doi.org/10.1109/tmi.2016.2526687
16 https://doi.org/10.1109/tmi.2016.2535865
17 https://doi.org/10.1145/2733373.2807412
18 https://doi.org/10.5244/c.28.6
19 schema:datePublished 2016
20 schema:datePublishedReg 2016-01-01
21 schema:description Holistically detecting interstitial lung disease (ILD) patterns from CT images is challenging yet clinically important. Unfortunately, most existing solutions rely on manually provided regions of interest, limiting their clinical usefulness. In addition, no work has yet focused on predicting more than one ILD from the same CT slice, despite the frequency of such occurrences. To address these limitations, we propose two variations of multi-label deep convolutional neural networks (CNNs). The first uses a deep CNN to detect the presence of multiple ILDs using a regression-based loss function. Our second variant further improves performance, using spatially invariant Fisher Vector encoding of the CNN feature activations. We test our algorithms on a dataset of 533 patients using five-fold cross-validation, achieving high area-under-curve (AUC) scores of 0.982, 0.972, 0.893 and 0.993 for Ground Glass, Reticular, Honeycomb and Emphysema, respectively. As such, our work represents an important step forward in providing clinically effective ILD detection.
22 schema:editor Ndd09f1fd21744d938ad6d894f1bdb39b
23 schema:genre chapter
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N2ea79b37be504d8baef9b15855682451
27 schema:name Multi-label Deep Regression and Unordered Pooling for Holistic Interstitial Lung Disease Pattern Detection
28 schema:pagination 147-155
29 schema:productId N04769f3c23c64226a4826c405f137f3f
30 N420fcdb5bb4a4413b0ea7c33028e3632
31 Nb13ae5cc430941f29eb9dc8afce202e3
32 schema:publisher N8896505b9c2c4a56931a2b3a77c135f5
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084901352
34 https://doi.org/10.1007/978-3-319-47157-0_18
35 schema:sdDatePublished 2019-04-15T14:29
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N7f2f544bb403492781482b98ab3580d3
38 schema:url http://link.springer.com/10.1007/978-3-319-47157-0_18
39 sgo:license sg:explorer/license/
40 sgo:sdDataset chapters
41 rdf:type schema:Chapter
42 N04769f3c23c64226a4826c405f137f3f schema:name doi
43 schema:value 10.1007/978-3-319-47157-0_18
44 rdf:type schema:PropertyValue
45 N1cc0be60610841229b314df126f329a8 schema:name National Institutes of Health (NIH)
46 rdf:type schema:Organization
47 N2b8b4295f1054ff3ae54a3967d6855bb rdf:first sg:person.0705635036.05
48 rdf:rest Nfd055e3210774219abfef7c856cd8ede
49 N2ea79b37be504d8baef9b15855682451 schema:isbn 978-3-319-47156-3
50 978-3-319-47157-0
51 schema:name Machine Learning in Medical Imaging
52 rdf:type schema:Book
53 N420fcdb5bb4a4413b0ea7c33028e3632 schema:name dimensions_id
54 schema:value pub.1084901352
55 rdf:type schema:PropertyValue
56 N43782f79987848109fc57c0eb8ffefa8 schema:name National Institutes of Health (NIH)
57 rdf:type schema:Organization
58 N5118ae66d5e74c37aabb03ef0dbc0491 schema:familyName Adeli
59 schema:givenName Ehsan
60 rdf:type schema:Person
61 N55eab1396af14ddca19cbdfe5c5e59c0 rdf:first sg:person.01222313370.49
62 rdf:rest N2b8b4295f1054ff3ae54a3967d6855bb
63 N62eed2dcc1244bfdadb13fee054a3bc0 rdf:first Nec9952d69154409fabdc4ae1fbe8c217
64 rdf:rest N9d88b32d8bba4b898c83bac1e465cdee
65 N7f2f544bb403492781482b98ab3580d3 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N8896505b9c2c4a56931a2b3a77c135f5 schema:location Cham
68 schema:name Springer International Publishing
69 rdf:type schema:Organisation
70 N8a3178e18d6c42df9b16c7e08c559b8b rdf:first Nc29c08a74f1840049f3df5c734eded65
71 rdf:rest N62eed2dcc1244bfdadb13fee054a3bc0
72 N8e8071e871a24489a873e8a9c2e25c4d schema:name National Institutes of Health (NIH)
73 rdf:type schema:Organization
74 N90f5a92d39c24fefba88df2d2302ded3 schema:name National Institutes of Health (NIH)
75 rdf:type schema:Organization
76 N981f77ada0924f2dbc6ca035663ffed7 schema:name National Institutes of Health (NIH)
77 rdf:type schema:Organization
78 N9bb24b0b74144e80b4c26fc22d0a11f6 rdf:first sg:person.01312676340.06
79 rdf:rest rdf:nil
80 N9d88b32d8bba4b898c83bac1e465cdee rdf:first Ndc551b1c2db444ecb2cb0f4bf31b820a
81 rdf:rest rdf:nil
82 Na2cb5dcee5ef49e9a26cc1472834ae02 schema:familyName Wang
83 schema:givenName Li
84 rdf:type schema:Person
85 Nb13ae5cc430941f29eb9dc8afce202e3 schema:name readcube_id
86 schema:value 43bf8a20f8126d317a6b38e715cdfec55841f71e2c77683ed89253a32a6fc2dc
87 rdf:type schema:PropertyValue
88 Nc29c08a74f1840049f3df5c734eded65 schema:familyName Wang
89 schema:givenName Qian
90 rdf:type schema:Person
91 Ncc7b8106b4cc4c999c3869c50e962c62 schema:name National Institutes of Health (NIH)
92 rdf:type schema:Organization
93 Ndc551b1c2db444ecb2cb0f4bf31b820a schema:familyName Suk
94 schema:givenName Heung-Il
95 rdf:type schema:Person
96 Ndd09f1fd21744d938ad6d894f1bdb39b rdf:first Na2cb5dcee5ef49e9a26cc1472834ae02
97 rdf:rest Nee987f32e727440cb930d709e32c1ea6
98 Ne33bb480c6ea4b139f5091575d99c8af rdf:first sg:person.011331054577.30
99 rdf:rest N9bb24b0b74144e80b4c26fc22d0a11f6
100 Nec9952d69154409fabdc4ae1fbe8c217 schema:familyName Shi
101 schema:givenName Yinghuan
102 rdf:type schema:Person
103 Nee987f32e727440cb930d709e32c1ea6 rdf:first N5118ae66d5e74c37aabb03ef0dbc0491
104 rdf:rest N8a3178e18d6c42df9b16c7e08c559b8b
105 Nf77fb2e2cf99465796b3936f63ed1e60 rdf:first sg:person.015650075713.17
106 rdf:rest Ne33bb480c6ea4b139f5091575d99c8af
107 Nfd055e3210774219abfef7c856cd8ede rdf:first sg:person.01353423536.73
108 rdf:rest Nf77fb2e2cf99465796b3936f63ed1e60
109 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
110 schema:name Information and Computing Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
113 schema:name Artificial Intelligence and Image Processing
114 rdf:type schema:DefinedTerm
115 sg:person.011331054577.30 schema:affiliation N8e8071e871a24489a873e8a9c2e25c4d
116 schema:familyName Summers
117 schema:givenName Ronald M.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30
119 rdf:type schema:Person
120 sg:person.01222313370.49 schema:affiliation Ncc7b8106b4cc4c999c3869c50e962c62
121 schema:familyName Gao
122 schema:givenName Mingchen
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222313370.49
124 rdf:type schema:Person
125 sg:person.01312676340.06 schema:affiliation N43782f79987848109fc57c0eb8ffefa8
126 schema:familyName Mollura
127 schema:givenName Daniel J.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312676340.06
129 rdf:type schema:Person
130 sg:person.01353423536.73 schema:affiliation N90f5a92d39c24fefba88df2d2302ded3
131 schema:familyName Lu
132 schema:givenName Le
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73
134 rdf:type schema:Person
135 sg:person.015650075713.17 schema:affiliation N1cc0be60610841229b314df126f329a8
136 schema:familyName Harrison
137 schema:givenName Adam P.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015650075713.17
139 rdf:type schema:Person
140 sg:person.0705635036.05 schema:affiliation N981f77ada0924f2dbc6ca035663ffed7
141 schema:familyName Xu
142 schema:givenName Ziyue
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705635036.05
144 rdf:type schema:Person
145 sg:pub.10.1007/978-3-319-10470-6_73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039716664
146 https://doi.org/10.1007/978-3-319-10470-6_73
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/978-3-319-10584-0_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032984348
149 https://doi.org/10.1007/978-3-319-10584-0_26
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/978-3-319-24553-9_82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023585960
152 https://doi.org/10.1007/978-3-319-24553-9_82
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/978-3-642-15561-1_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045344996
155 https://doi.org/10.1007/978-3-642-15561-1_11
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s11263-015-0872-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052902331
158 https://doi.org/10.1007/s11263-015-0872-3
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.compmedimag.2011.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038124924
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1080/21681163.2015.1124249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005532781
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/cvpr.2015.7298643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093985706
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/isbi.2016.7493497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094994570
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/tmi.2013.2241448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696054
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/tmi.2015.2393954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696475
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/tmi.2016.2526687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696692
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/tmi.2016.2535865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696713
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1145/2733373.2807412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039662878
177 rdf:type schema:CreativeWork
178 https://doi.org/10.5244/c.28.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099426737
179 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...