Simulating Urban Growth with Raster and Vector Models: A Case Study for the City of Can Tho, Vietnam View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2016

AUTHORS

Patrick Taillandier , Arnaud Banos , Alexis Drogoul , Benoit Gaudou , Nicolas Marilleau , Quang Chi Truong

ABSTRACT

Urban growth has been widely studied and many models (in particular Cellular Automata and Agent-Based Models) have been developed. Most of these models rely on two representations of the geographic space: raster and vector. Both representations have their own strengths and drawbacks. The raster models are simpler to implement and require less data, which explains their success and why most of urban growth models are based on this representation. However, they are not adapted to microscopic dynamics such as, for example, the construction of buildings. To reach such goal, a vector-based representation of space is mandatory. However, very few vector models exist, and none of them is easily adaptable to different case studies. In this paper, we propose to use a simple raster model and to adapt it to a vector representation of the geographic space and processes allowing studying urban growth at fine scale. Both models have been validated by a case study concerning the city of Can Tho, Vietnam. More... »

PAGES

154-171

References to SciGraph publications

Book

TITLE

Autonomous Agents and Multiagent Systems

ISBN

978-3-319-46839-6
978-3-319-46840-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-46840-2_10

DOI

http://dx.doi.org/10.1007/978-3-319-46840-2_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1086145326


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Civil Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "UMR IDEES, University of Rouen"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taillandier", 
        "givenName": "Patrick", 
        "id": "sg:person.010126672523.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010126672523.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "UMR G\u00e9ographie-cit\u00e9s, CNRS"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Banos", 
        "givenName": "Arnaud", 
        "id": "sg:person.0732454143.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732454143.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "UMI 209 UMMISCO, IRD Bondy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drogoul", 
        "givenName": "Alexis", 
        "id": "sg:person.013046461323.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013046461323.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "University of Toulouse 1 Capitole"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaudou", 
        "givenName": "Benoit", 
        "id": "sg:person.011056232320.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011056232320.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "UMI 209 UMMISCO, IRD Bondy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marilleau", 
        "givenName": "Nicolas", 
        "id": "sg:person.016416061075.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016416061075.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Can Tho University", 
          "id": "https://www.grid.ac/institutes/grid.25488.33", 
          "name": [
            "UMI 209 UMMISCO, IRD Bondy", 
            "Can Tho University", 
            "PDIMSC, University Pierre and Marie Curie/IRD"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Truong", 
        "givenName": "Quang Chi", 
        "id": "sg:person.013365131771.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013365131771.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1467-8306.2006.00477.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000437046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.198702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002585912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.198702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002585912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13658810903569572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003467210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-009-0655-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003815375", 
          "https://doi.org/10.1007/s10479-009-0655-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10109-010-0131-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004628276", 
          "https://doi.org/10.1007/s10109-010-0131-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0272-4944(03)00003-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009376144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0272-4944(03)00003-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009376144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-90-481-8927-4_32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015879362", 
          "https://doi.org/10.1007/978-90-481-8927-4_32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-44927-7_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020998454", 
          "https://doi.org/10.1007/978-3-642-44927-7_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0198-9715(98)00017-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026593373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2013.03.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030430084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cities.2013.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031002417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-32243-6_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031172612", 
          "https://doi.org/10.1007/978-3-540-32243-6_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-32243-6_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031172612", 
          "https://doi.org/10.1007/978-3-540-32243-6_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01944360208976274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042826346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-29710-3_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044985621", 
          "https://doi.org/10.1007/3-540-29710-3_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0198-9715(99)00015-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046701113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1068/a251175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058153285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1068/a251175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058153285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1068/b030147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058155795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1068/b030147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058155795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1068/b240247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058156729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1068/b240247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058156729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5198/jtlu.2015.806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072704427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/9781615832538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098735987"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "Urban growth has been widely studied and many models (in particular Cellular Automata and Agent-Based Models) have been developed. Most of these models rely on two representations of the geographic space: raster and vector. Both representations have their own strengths and drawbacks. The raster models are simpler to implement and require less data, which explains their success and why most of urban growth models are based on this representation. However, they are not adapted to microscopic dynamics such as, for example, the construction of buildings. To reach such goal, a vector-based representation of space is mandatory. However, very few vector models exist, and none of them is easily adaptable to different case studies. In this paper, we propose to use a simple raster model and to adapt it to a vector representation of the geographic space and processes allowing studying urban growth at fine scale. Both models have been validated by a case study concerning the city of Can Tho, Vietnam.", 
    "editor": [
      {
        "familyName": "Osman", 
        "givenName": "Nardine", 
        "type": "Person"
      }, 
      {
        "familyName": "Sierra", 
        "givenName": "Carles", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-46840-2_10", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-46839-6", 
        "978-3-319-46840-2"
      ], 
      "name": "Autonomous Agents and Multiagent Systems", 
      "type": "Book"
    }, 
    "name": "Simulating Urban Growth with Raster and Vector Models: A Case Study for the City of Can Tho, Vietnam", 
    "pagination": "154-171", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-46840-2_10"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9c32db3264e403d494c705cba15906afc627e3b0998010b00b343b03b47a56b7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1086145326"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-46840-2_10", 
      "https://app.dimensions.ai/details/publication/pub.1086145326"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T12:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000600.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-46840-2_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46840-2_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46840-2_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46840-2_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46840-2_10'


 

This table displays all metadata directly associated to this object as RDF triples.

183 TRIPLES      23 PREDICATES      47 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-46840-2_10 schema:about anzsrc-for:09
2 anzsrc-for:0905
3 schema:author N9c5445fd15154bfe87c1131d19fff649
4 schema:citation sg:pub.10.1007/3-540-29710-3_11
5 sg:pub.10.1007/978-3-540-32243-6_11
6 sg:pub.10.1007/978-3-642-44927-7_9
7 sg:pub.10.1007/978-90-481-8927-4_32
8 sg:pub.10.1007/s10109-010-0131-7
9 sg:pub.10.1007/s10479-009-0655-8
10 https://doi.org/10.1016/j.cities.2013.01.005
11 https://doi.org/10.1016/j.ecolmodel.2013.03.019
12 https://doi.org/10.1016/s0198-9715(98)00017-9
13 https://doi.org/10.1016/s0198-9715(99)00015-0
14 https://doi.org/10.1016/s0272-4944(03)00003-3
15 https://doi.org/10.1068/a251175
16 https://doi.org/10.1068/b030147
17 https://doi.org/10.1068/b240247
18 https://doi.org/10.1080/01944360208976274
19 https://doi.org/10.1080/13658810903569572
20 https://doi.org/10.1103/physrevlett.111.198702
21 https://doi.org/10.1108/9781615832538
22 https://doi.org/10.1111/j.1467-8306.2006.00477.x
23 https://doi.org/10.5198/jtlu.2015.806
24 schema:datePublished 2016
25 schema:datePublishedReg 2016-01-01
26 schema:description Urban growth has been widely studied and many models (in particular Cellular Automata and Agent-Based Models) have been developed. Most of these models rely on two representations of the geographic space: raster and vector. Both representations have their own strengths and drawbacks. The raster models are simpler to implement and require less data, which explains their success and why most of urban growth models are based on this representation. However, they are not adapted to microscopic dynamics such as, for example, the construction of buildings. To reach such goal, a vector-based representation of space is mandatory. However, very few vector models exist, and none of them is easily adaptable to different case studies. In this paper, we propose to use a simple raster model and to adapt it to a vector representation of the geographic space and processes allowing studying urban growth at fine scale. Both models have been validated by a case study concerning the city of Can Tho, Vietnam.
27 schema:editor N6be7e35d9bf04a5d8c34a80f6cc54c3f
28 schema:genre chapter
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf Nc033ecf70b48473990880a438361c2f7
32 schema:name Simulating Urban Growth with Raster and Vector Models: A Case Study for the City of Can Tho, Vietnam
33 schema:pagination 154-171
34 schema:productId N2536021584b24a95ab72b368e73945b2
35 N65458d6aa6aa4dabb8786da44bfbaacd
36 N72e98b1e7ce44ff4a5b1246862804eb8
37 schema:publisher Nacb84c6ed2034f5bb28e25c839300714
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086145326
39 https://doi.org/10.1007/978-3-319-46840-2_10
40 schema:sdDatePublished 2019-04-15T12:13
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nccf0ce774a5840478a4ecffe99779ce3
43 schema:url http://link.springer.com/10.1007/978-3-319-46840-2_10
44 sgo:license sg:explorer/license/
45 sgo:sdDataset chapters
46 rdf:type schema:Chapter
47 N2536021584b24a95ab72b368e73945b2 schema:name doi
48 schema:value 10.1007/978-3-319-46840-2_10
49 rdf:type schema:PropertyValue
50 N55796745db564ff48769bc076c8a1dbd schema:name UMI 209 UMMISCO, IRD Bondy
51 rdf:type schema:Organization
52 N5cc705a74a3b4d04970a684d932dcb1d schema:name UMI 209 UMMISCO, IRD Bondy
53 rdf:type schema:Organization
54 N65458d6aa6aa4dabb8786da44bfbaacd schema:name readcube_id
55 schema:value 9c32db3264e403d494c705cba15906afc627e3b0998010b00b343b03b47a56b7
56 rdf:type schema:PropertyValue
57 N6be7e35d9bf04a5d8c34a80f6cc54c3f rdf:first Nf125155d5c504dcf811c6d7e3a3ff7f3
58 rdf:rest Nefa8c3b0119c4bc1a39d923a258e623f
59 N7185dfeba0ad4159a8a2540bd8890612 rdf:first sg:person.013046461323.11
60 rdf:rest Nb6ac66239b55407099783058b0ab8b54
61 N72e98b1e7ce44ff4a5b1246862804eb8 schema:name dimensions_id
62 schema:value pub.1086145326
63 rdf:type schema:PropertyValue
64 N84a364f0984748a19ba8a2230d6b00de rdf:first sg:person.016416061075.11
65 rdf:rest Nd7b31bd334104577a02022a1b3e5619e
66 N96e0d86e70ab45b7bbf38c9b24e4585d schema:name UMR Géographie-cités, CNRS
67 rdf:type schema:Organization
68 N9c5445fd15154bfe87c1131d19fff649 rdf:first sg:person.010126672523.68
69 rdf:rest Nd714d802111d4d7b833b11108bf5fdc7
70 Nacb84c6ed2034f5bb28e25c839300714 schema:location Cham
71 schema:name Springer International Publishing
72 rdf:type schema:Organisation
73 Nb6ac66239b55407099783058b0ab8b54 rdf:first sg:person.011056232320.95
74 rdf:rest N84a364f0984748a19ba8a2230d6b00de
75 Nc033ecf70b48473990880a438361c2f7 schema:isbn 978-3-319-46839-6
76 978-3-319-46840-2
77 schema:name Autonomous Agents and Multiagent Systems
78 rdf:type schema:Book
79 Nccf0ce774a5840478a4ecffe99779ce3 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Nd714d802111d4d7b833b11108bf5fdc7 rdf:first sg:person.0732454143.17
82 rdf:rest N7185dfeba0ad4159a8a2540bd8890612
83 Nd7b31bd334104577a02022a1b3e5619e rdf:first sg:person.013365131771.75
84 rdf:rest rdf:nil
85 Ne156aac48589401895acf3691c2bf254 schema:name University of Toulouse 1 Capitole
86 rdf:type schema:Organization
87 Ne29b54288e3443489fa8d1b6d4f6f6db schema:name UMR IDEES, University of Rouen
88 rdf:type schema:Organization
89 Ne4a2e5a856e0449680797451f20395ee schema:familyName Sierra
90 schema:givenName Carles
91 rdf:type schema:Person
92 Nefa8c3b0119c4bc1a39d923a258e623f rdf:first Ne4a2e5a856e0449680797451f20395ee
93 rdf:rest rdf:nil
94 Nf125155d5c504dcf811c6d7e3a3ff7f3 schema:familyName Osman
95 schema:givenName Nardine
96 rdf:type schema:Person
97 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
98 schema:name Engineering
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
101 schema:name Civil Engineering
102 rdf:type schema:DefinedTerm
103 sg:person.010126672523.68 schema:affiliation Ne29b54288e3443489fa8d1b6d4f6f6db
104 schema:familyName Taillandier
105 schema:givenName Patrick
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010126672523.68
107 rdf:type schema:Person
108 sg:person.011056232320.95 schema:affiliation Ne156aac48589401895acf3691c2bf254
109 schema:familyName Gaudou
110 schema:givenName Benoit
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011056232320.95
112 rdf:type schema:Person
113 sg:person.013046461323.11 schema:affiliation N5cc705a74a3b4d04970a684d932dcb1d
114 schema:familyName Drogoul
115 schema:givenName Alexis
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013046461323.11
117 rdf:type schema:Person
118 sg:person.013365131771.75 schema:affiliation https://www.grid.ac/institutes/grid.25488.33
119 schema:familyName Truong
120 schema:givenName Quang Chi
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013365131771.75
122 rdf:type schema:Person
123 sg:person.016416061075.11 schema:affiliation N55796745db564ff48769bc076c8a1dbd
124 schema:familyName Marilleau
125 schema:givenName Nicolas
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016416061075.11
127 rdf:type schema:Person
128 sg:person.0732454143.17 schema:affiliation N96e0d86e70ab45b7bbf38c9b24e4585d
129 schema:familyName Banos
130 schema:givenName Arnaud
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732454143.17
132 rdf:type schema:Person
133 sg:pub.10.1007/3-540-29710-3_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044985621
134 https://doi.org/10.1007/3-540-29710-3_11
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/978-3-540-32243-6_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031172612
137 https://doi.org/10.1007/978-3-540-32243-6_11
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/978-3-642-44927-7_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020998454
140 https://doi.org/10.1007/978-3-642-44927-7_9
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/978-90-481-8927-4_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015879362
143 https://doi.org/10.1007/978-90-481-8927-4_32
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s10109-010-0131-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004628276
146 https://doi.org/10.1007/s10109-010-0131-7
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s10479-009-0655-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003815375
149 https://doi.org/10.1007/s10479-009-0655-8
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.cities.2013.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031002417
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.ecolmodel.2013.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030430084
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/s0198-9715(98)00017-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026593373
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/s0198-9715(99)00015-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046701113
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/s0272-4944(03)00003-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009376144
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1068/a251175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058153285
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1068/b030147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058155795
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1068/b240247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058156729
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1080/01944360208976274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042826346
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1080/13658810903569572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003467210
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.111.198702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002585912
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1108/9781615832538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098735987
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1111/j.1467-8306.2006.00477.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000437046
176 rdf:type schema:CreativeWork
177 https://doi.org/10.5198/jtlu.2015.806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072704427
178 rdf:type schema:CreativeWork
179 https://www.grid.ac/institutes/grid.25488.33 schema:alternateName Can Tho University
180 schema:name Can Tho University
181 PDIMSC, University Pierre and Marie Curie/IRD
182 UMI 209 UMMISCO, IRD Bondy
183 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...