Dense Volume-to-Volume Vascular Boundary Detection View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2016

AUTHORS

Jameson Merkow , Alison Marsden , David Kriegman , Zhuowen Tu

ABSTRACT

In this work, we tackle the important problem of dense 3D volume labeling in medical imaging. We start by introducing HED-3D, a 3D extension of the state-of-the-art 2D edge detector (HED). Next, we develop a novel 3D-Convolutional Neural Network (CNN) architecture, I2I-3D, that predicts boundary location in volumetric data. Our fine-to-fine, deeply supervised framework addresses three critical issues to 3D boundary detection: (1) efficient, holistic, end-to-end volumetric label training and prediction (2) precise voxel-level prediction to capture fine scale structures prevalent in medical data and (3) directed multi-scale, multi-level feature learning. We evaluate our approaches on a dataset consisting of 93 medical image volumes with a wide variety of anatomical regions and vascular structures. We show that our deep learning approaches out-perform the current state-of-the-art in 3D vascular boundary detection (structured forests 3D), by a large margin, as well as HED applied to slices. Prediction takes about one minute on a typical \(512\,\times \,512\,\times \,512\) volume, when using GPU. More... »

PAGES

371-379

References to SciGraph publications

  • 2015. Structural Edge Detection for Cardiovascular Modeling in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2015
  • 2015. 3D Deep Learning for Efficient and Robust Landmark Detection in Volumetric Data in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION -- MICCAI 2015
  • 2015. DeepOrgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmentation in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION -- MICCAI 2015
  • 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2015
  • Book

    TITLE

    Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2016

    ISBN

    978-3-319-46725-2
    978-3-319-46726-9

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-46726-9_43

    DOI

    http://dx.doi.org/10.1007/978-3-319-46726-9_43

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084920535


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of California System", 
              "id": "https://www.grid.ac/institutes/grid.30389.31", 
              "name": [
                "University of California"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Merkow", 
            "givenName": "Jameson", 
            "id": "sg:person.07504550725.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07504550725.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Stanford University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marsden", 
            "givenName": "Alison", 
            "id": "sg:person.01304344221.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304344221.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California System", 
              "id": "https://www.grid.ac/institutes/grid.30389.31", 
              "name": [
                "University of California"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kriegman", 
            "givenName": "David", 
            "id": "sg:person.010535376471.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010535376471.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California System", 
              "id": "https://www.grid.ac/institutes/grid.30389.31", 
              "name": [
                "University of California"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tu", 
            "givenName": "Zhuowen", 
            "id": "sg:person.0714050112.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714050112.48"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-319-24574-4_88", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002970113", 
              "https://doi.org/10.1007/978-3-319-24574-4_88"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-24574-4_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017774818", 
              "https://doi.org/10.1007/978-3-319-24574-4_28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-24553-9_68", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034209570", 
              "https://doi.org/10.1007/978-3-319-24553-9_68"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-24553-9_69", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038126222", 
              "https://doi.org/10.1007/978-3-319-24553-9_69"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2004.1273918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050308038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2647868.2654889", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052031051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2010.161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2014.2377715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061744793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2015.7298965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093626237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2015.164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094045097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2015.7298594", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094291017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2015.7298642", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095686079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5244/c.28.6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099426737"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016", 
        "datePublishedReg": "2016-01-01", 
        "description": "In this work, we tackle the important problem of dense 3D volume labeling in medical imaging. We start by introducing HED-3D, a 3D extension of the state-of-the-art 2D edge detector (HED). Next, we develop a novel 3D-Convolutional Neural Network (CNN) architecture, I2I-3D, that predicts boundary location in volumetric data. Our fine-to-fine, deeply supervised framework addresses three critical issues to 3D boundary detection: (1) efficient, holistic, end-to-end volumetric label training and prediction (2) precise voxel-level prediction to capture fine scale structures prevalent in medical data and (3) directed multi-scale, multi-level feature learning. We evaluate our approaches on a dataset consisting of 93 medical image volumes with a wide variety of anatomical regions and vascular structures. We show that our deep learning approaches out-perform the current state-of-the-art in 3D vascular boundary detection (structured forests 3D), by a large margin, as well as HED applied to slices. Prediction takes about one minute on a typical \\(512\\,\\times \\,512\\,\\times \\,512\\) volume, when using GPU.", 
        "editor": [
          {
            "familyName": "Ourselin", 
            "givenName": "Sebastien", 
            "type": "Person"
          }, 
          {
            "familyName": "Joskowicz", 
            "givenName": "Leo", 
            "type": "Person"
          }, 
          {
            "familyName": "Sabuncu", 
            "givenName": "Mert R.", 
            "type": "Person"
          }, 
          {
            "familyName": "Unal", 
            "givenName": "Gozde", 
            "type": "Person"
          }, 
          {
            "familyName": "Wells", 
            "givenName": "William", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-46726-9_43", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3490919", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3490885", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": {
          "isbn": [
            "978-3-319-46725-2", 
            "978-3-319-46726-9"
          ], 
          "name": "Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2016", 
          "type": "Book"
        }, 
        "name": "Dense Volume-to-Volume Vascular Boundary Detection", 
        "pagination": "371-379", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-46726-9_43"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f3ec0677d23ee5d9192b4dabdf6c564398e33815f0656b248d5e118487550fb4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084920535"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-46726-9_43", 
          "https://app.dimensions.ai/details/publication/pub.1084920535"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T10:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000279.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-46726-9_43"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46726-9_43'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46726-9_43'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46726-9_43'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46726-9_43'


     

    This table displays all metadata directly associated to this object as RDF triples.

    156 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-46726-9_43 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Necee4ef0eb374e6ba681327dcb1432a7
    4 schema:citation sg:pub.10.1007/978-3-319-24553-9_68
    5 sg:pub.10.1007/978-3-319-24553-9_69
    6 sg:pub.10.1007/978-3-319-24574-4_28
    7 sg:pub.10.1007/978-3-319-24574-4_88
    8 https://doi.org/10.1109/cvpr.2015.7298594
    9 https://doi.org/10.1109/cvpr.2015.7298642
    10 https://doi.org/10.1109/cvpr.2015.7298965
    11 https://doi.org/10.1109/iccv.2015.164
    12 https://doi.org/10.1109/tpami.2004.1273918
    13 https://doi.org/10.1109/tpami.2010.161
    14 https://doi.org/10.1109/tpami.2014.2377715
    15 https://doi.org/10.1145/2647868.2654889
    16 https://doi.org/10.5244/c.28.6
    17 schema:datePublished 2016
    18 schema:datePublishedReg 2016-01-01
    19 schema:description In this work, we tackle the important problem of dense 3D volume labeling in medical imaging. We start by introducing HED-3D, a 3D extension of the state-of-the-art 2D edge detector (HED). Next, we develop a novel 3D-Convolutional Neural Network (CNN) architecture, I2I-3D, that predicts boundary location in volumetric data. Our fine-to-fine, deeply supervised framework addresses three critical issues to 3D boundary detection: (1) efficient, holistic, end-to-end volumetric label training and prediction (2) precise voxel-level prediction to capture fine scale structures prevalent in medical data and (3) directed multi-scale, multi-level feature learning. We evaluate our approaches on a dataset consisting of 93 medical image volumes with a wide variety of anatomical regions and vascular structures. We show that our deep learning approaches out-perform the current state-of-the-art in 3D vascular boundary detection (structured forests 3D), by a large margin, as well as HED applied to slices. Prediction takes about one minute on a typical \(512\,\times \,512\,\times \,512\) volume, when using GPU.
    20 schema:editor N1d98140931d846a7830abe74c7490d11
    21 schema:genre chapter
    22 schema:inLanguage en
    23 schema:isAccessibleForFree true
    24 schema:isPartOf N461570ff9ca3413caffb627a1e305b22
    25 schema:name Dense Volume-to-Volume Vascular Boundary Detection
    26 schema:pagination 371-379
    27 schema:productId N1a31289b7a4f4aa88f6dd425e759a7ef
    28 N5fd24d03ca164c5b86a105c63616f87f
    29 N74ce978308364b0398efbb066acdd30f
    30 schema:publisher N719396638a684bba91a94400f5a5ba3f
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084920535
    32 https://doi.org/10.1007/978-3-319-46726-9_43
    33 schema:sdDatePublished 2019-04-15T10:39
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher Nf3f3788c1df8482e92d82a8393bc4ebf
    36 schema:url http://link.springer.com/10.1007/978-3-319-46726-9_43
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset chapters
    39 rdf:type schema:Chapter
    40 N1a31289b7a4f4aa88f6dd425e759a7ef schema:name readcube_id
    41 schema:value f3ec0677d23ee5d9192b4dabdf6c564398e33815f0656b248d5e118487550fb4
    42 rdf:type schema:PropertyValue
    43 N1a3bf5263b224074b43f4b501150a8f7 rdf:first sg:person.010535376471.33
    44 rdf:rest Nb625dd33981a40a1ac4dd9217c88f64f
    45 N1d98140931d846a7830abe74c7490d11 rdf:first Ncd4b26688f2741dea67a13aa642f6532
    46 rdf:rest Nbc4744d3f66843f2b75e318dceeb6986
    47 N22e78eab60684def86873d5ba8e7ce67 schema:familyName Sabuncu
    48 schema:givenName Mert R.
    49 rdf:type schema:Person
    50 N461570ff9ca3413caffb627a1e305b22 schema:isbn 978-3-319-46725-2
    51 978-3-319-46726-9
    52 schema:name Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2016
    53 rdf:type schema:Book
    54 N490ab563d0dc4ad1849f76784fde7a7b rdf:first N22e78eab60684def86873d5ba8e7ce67
    55 rdf:rest Nae16950992274107b2e45a5167b58049
    56 N5fd24d03ca164c5b86a105c63616f87f schema:name doi
    57 schema:value 10.1007/978-3-319-46726-9_43
    58 rdf:type schema:PropertyValue
    59 N6717123131c241bb8ef02ff0f52fc65f schema:familyName Wells
    60 schema:givenName William
    61 rdf:type schema:Person
    62 N719396638a684bba91a94400f5a5ba3f schema:location Cham
    63 schema:name Springer International Publishing
    64 rdf:type schema:Organisation
    65 N7427b541072e4781ad1965779d16e4bf rdf:first sg:person.01304344221.16
    66 rdf:rest N1a3bf5263b224074b43f4b501150a8f7
    67 N74ce978308364b0398efbb066acdd30f schema:name dimensions_id
    68 schema:value pub.1084920535
    69 rdf:type schema:PropertyValue
    70 N89aeea1a97a340cab11e842a7c4e01b5 schema:familyName Joskowicz
    71 schema:givenName Leo
    72 rdf:type schema:Person
    73 Na6955716c7174dfe8dddf2d8ea2fb7ac schema:familyName Unal
    74 schema:givenName Gozde
    75 rdf:type schema:Person
    76 Nae16950992274107b2e45a5167b58049 rdf:first Na6955716c7174dfe8dddf2d8ea2fb7ac
    77 rdf:rest Nc50e84e1e2224ebc8495e969184fda83
    78 Nb625dd33981a40a1ac4dd9217c88f64f rdf:first sg:person.0714050112.48
    79 rdf:rest rdf:nil
    80 Nbc4744d3f66843f2b75e318dceeb6986 rdf:first N89aeea1a97a340cab11e842a7c4e01b5
    81 rdf:rest N490ab563d0dc4ad1849f76784fde7a7b
    82 Nc50e84e1e2224ebc8495e969184fda83 rdf:first N6717123131c241bb8ef02ff0f52fc65f
    83 rdf:rest rdf:nil
    84 Ncd4b26688f2741dea67a13aa642f6532 schema:familyName Ourselin
    85 schema:givenName Sebastien
    86 rdf:type schema:Person
    87 Necee4ef0eb374e6ba681327dcb1432a7 rdf:first sg:person.07504550725.13
    88 rdf:rest N7427b541072e4781ad1965779d16e4bf
    89 Nf3f3788c1df8482e92d82a8393bc4ebf schema:name Springer Nature - SN SciGraph project
    90 rdf:type schema:Organization
    91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Information and Computing Sciences
    93 rdf:type schema:DefinedTerm
    94 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Artificial Intelligence and Image Processing
    96 rdf:type schema:DefinedTerm
    97 sg:grant.3490885 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-46726-9_43
    98 rdf:type schema:MonetaryGrant
    99 sg:grant.3490919 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-46726-9_43
    100 rdf:type schema:MonetaryGrant
    101 sg:person.010535376471.33 schema:affiliation https://www.grid.ac/institutes/grid.30389.31
    102 schema:familyName Kriegman
    103 schema:givenName David
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010535376471.33
    105 rdf:type schema:Person
    106 sg:person.01304344221.16 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    107 schema:familyName Marsden
    108 schema:givenName Alison
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304344221.16
    110 rdf:type schema:Person
    111 sg:person.0714050112.48 schema:affiliation https://www.grid.ac/institutes/grid.30389.31
    112 schema:familyName Tu
    113 schema:givenName Zhuowen
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714050112.48
    115 rdf:type schema:Person
    116 sg:person.07504550725.13 schema:affiliation https://www.grid.ac/institutes/grid.30389.31
    117 schema:familyName Merkow
    118 schema:givenName Jameson
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07504550725.13
    120 rdf:type schema:Person
    121 sg:pub.10.1007/978-3-319-24553-9_68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034209570
    122 https://doi.org/10.1007/978-3-319-24553-9_68
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/978-3-319-24553-9_69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038126222
    125 https://doi.org/10.1007/978-3-319-24553-9_69
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/978-3-319-24574-4_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017774818
    128 https://doi.org/10.1007/978-3-319-24574-4_28
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/978-3-319-24574-4_88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002970113
    131 https://doi.org/10.1007/978-3-319-24574-4_88
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1109/cvpr.2015.7298594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094291017
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1109/cvpr.2015.7298642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095686079
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1109/cvpr.2015.7298965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093626237
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1109/iccv.2015.164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094045097
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1109/tpami.2004.1273918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050308038
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1109/tpami.2010.161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743879
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1109/tpami.2014.2377715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744793
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1145/2647868.2654889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052031051
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.5244/c.28.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099426737
    150 rdf:type schema:CreativeWork
    151 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
    152 schema:name Stanford University
    153 rdf:type schema:Organization
    154 https://www.grid.ac/institutes/grid.30389.31 schema:alternateName University of California System
    155 schema:name University of California
    156 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...