Imaging Biomarker Discovery for Lung Cancer Survival Prediction View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Jiawen Yao , Sheng Wang , Xinliang Zhu , Junzhou Huang

ABSTRACT

Solid tumors are heterogeneous tissues composed of a mixture of cells and have special tissue architectures. However, cellular heterogeneity, the differences in cell types are generally not reflected in molecular profilers or in recent histopathological image-based analysis of lung cancer, rendering such information underused. This paper presents the development of a computational approach in H&E stained pathological images to quantitatively describe cellular heterogeneity from different types of cells. In our work, a deep learning approach was first used for cell subtype classification. Then we introduced a set of quantitative features to describe cellular information. Several feature selection methods were used to discover significant imaging biomarkers for survival prediction. These discovered imaging biomarkers are consistent with pathological and biological evidence. Experimental results on two lung cancer data sets demonstrated that survival models bsuilt from the clinical imaging biomarkers have better prediction power than state-of-the-art methods using molecular profiling data and traditional imaging biomarkers. More... »

PAGES

649-657

Book

TITLE

Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016

ISBN

978-3-319-46722-1
978-3-319-46723-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_75

DOI

http://dx.doi.org/10.1007/978-3-319-46723-8_75

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084908365


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The University of Texas at Arlington", 
          "id": "https://www.grid.ac/institutes/grid.267315.4", 
          "name": [
            "University of Texas at Arlington"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Jiawen", 
        "id": "sg:person.013771521251.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013771521251.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas at Arlington", 
          "id": "https://www.grid.ac/institutes/grid.267315.4", 
          "name": [
            "University of Texas at Arlington"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Sheng", 
        "id": "sg:person.012371073425.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012371073425.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas at Arlington", 
          "id": "https://www.grid.ac/institutes/grid.267315.4", 
          "name": [
            "University of Texas at Arlington"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Xinliang", 
        "id": "sg:person.016157531760.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016157531760.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas at Arlington", 
          "id": "https://www.grid.ac/institutes/grid.267315.4", 
          "name": [
            "University of Texas at Arlington"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Junzhou", 
        "id": "sg:person.01112664711.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112664711.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/scitranslmed.3002564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003389409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3004330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005234727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-15-310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011145457", 
          "https://doi.org/10.1186/1471-2105-15-310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-15-310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011145457", 
          "https://doi.org/10.1186/1471-2105-15-310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-24574-4_43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012246548", 
          "https://doi.org/10.1007/978-3-319-24574-4_43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2015.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018971064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2015.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018971064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2015.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018971064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2015.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018971064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2015.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018971064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-28194-0_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020855081", 
          "https://doi.org/10.1007/978-3-319-28194-0_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2011.37.2185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022128964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2011.37.2185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022128964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034538282", 
          "https://doi.org/10.1186/1471-2105-9-14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.1790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040467803", 
          "https://doi.org/10.1038/nm.1790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-24888-2_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047297175", 
          "https://doi.org/10.1007/978-3-319-24888-2_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/08-aoas169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048372606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050302969", 
          "https://doi.org/10.1038/nbt.2940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2016.7493475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093766396"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "Solid tumors are heterogeneous tissues composed of a mixture of cells and have special tissue architectures. However, cellular heterogeneity, the differences in cell types are generally not reflected in molecular profilers or in recent histopathological image-based analysis of lung cancer, rendering such information underused. This paper presents the development of a computational approach in H&E stained pathological images to quantitatively describe cellular heterogeneity from different types of cells. In our work, a deep learning approach was first used for cell subtype classification. Then we introduced a set of quantitative features to describe cellular information. Several feature selection methods were used to discover significant imaging biomarkers for survival prediction. These discovered imaging biomarkers are consistent with pathological and biological evidence. Experimental results on two lung cancer data sets demonstrated that survival models bsuilt from the clinical imaging biomarkers have better prediction power than state-of-the-art methods using molecular profiling data and traditional imaging biomarkers.", 
    "editor": [
      {
        "familyName": "Ourselin", 
        "givenName": "Sebastien", 
        "type": "Person"
      }, 
      {
        "familyName": "Joskowicz", 
        "givenName": "Leo", 
        "type": "Person"
      }, 
      {
        "familyName": "Sabuncu", 
        "givenName": "Mert R.", 
        "type": "Person"
      }, 
      {
        "familyName": "Unal", 
        "givenName": "Gozde", 
        "type": "Person"
      }, 
      {
        "familyName": "Wells", 
        "givenName": "William", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-46723-8_75", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3850050", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3849808", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3580590", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-319-46722-1", 
        "978-3-319-46723-8"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2016", 
      "type": "Book"
    }, 
    "name": "Imaging Biomarker Discovery for Lung Cancer Survival Prediction", 
    "pagination": "649-657", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-46723-8_75"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "84a016963c9c860f1791fe8d66cb8942e2ade096d7a396e99b4d68fceb05a6be"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084908365"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-46723-8_75", 
      "https://app.dimensions.ai/details/publication/pub.1084908365"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000279.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-46723-8_75"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_75'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_75'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_75'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_75'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-46723-8_75 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Nfa46da6d80d040039e8902d855ef1632
4 schema:citation sg:pub.10.1007/978-3-319-24574-4_43
5 sg:pub.10.1007/978-3-319-24888-2_35
6 sg:pub.10.1007/978-3-319-28194-0_10
7 sg:pub.10.1038/nbt.2940
8 sg:pub.10.1038/nm.1790
9 sg:pub.10.1186/1471-2105-15-310
10 sg:pub.10.1186/1471-2105-9-14
11 https://doi.org/10.1016/j.media.2015.12.002
12 https://doi.org/10.1109/isbi.2016.7493475
13 https://doi.org/10.1126/scitranslmed.3002564
14 https://doi.org/10.1126/scitranslmed.3004330
15 https://doi.org/10.1200/jco.2011.37.2185
16 https://doi.org/10.1214/08-aoas169
17 schema:datePublished 2016
18 schema:datePublishedReg 2016-01-01
19 schema:description Solid tumors are heterogeneous tissues composed of a mixture of cells and have special tissue architectures. However, cellular heterogeneity, the differences in cell types are generally not reflected in molecular profilers or in recent histopathological image-based analysis of lung cancer, rendering such information underused. This paper presents the development of a computational approach in H&E stained pathological images to quantitatively describe cellular heterogeneity from different types of cells. In our work, a deep learning approach was first used for cell subtype classification. Then we introduced a set of quantitative features to describe cellular information. Several feature selection methods were used to discover significant imaging biomarkers for survival prediction. These discovered imaging biomarkers are consistent with pathological and biological evidence. Experimental results on two lung cancer data sets demonstrated that survival models bsuilt from the clinical imaging biomarkers have better prediction power than state-of-the-art methods using molecular profiling data and traditional imaging biomarkers.
20 schema:editor N643e008ce31049059268e07122d9e557
21 schema:genre chapter
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf Nae05437cc8fc4215b261970b911c622c
25 schema:name Imaging Biomarker Discovery for Lung Cancer Survival Prediction
26 schema:pagination 649-657
27 schema:productId N0c0ec18d133743548879d8d8a882a20d
28 N206267c10dba4309b40f040f124c37f4
29 N3ef45e5f74ac44489199ac2a8fc238e3
30 schema:publisher Nf3d128c07c7649a8b591f6dcee3ed4c8
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084908365
32 https://doi.org/10.1007/978-3-319-46723-8_75
33 schema:sdDatePublished 2019-04-16T00:52
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N7a9435216dfb48fc9833e697d35d802f
36 schema:url http://link.springer.com/10.1007/978-3-319-46723-8_75
37 sgo:license sg:explorer/license/
38 sgo:sdDataset chapters
39 rdf:type schema:Chapter
40 N0c0ec18d133743548879d8d8a882a20d schema:name readcube_id
41 schema:value 84a016963c9c860f1791fe8d66cb8942e2ade096d7a396e99b4d68fceb05a6be
42 rdf:type schema:PropertyValue
43 N1c620347ce704b358c970d409485778c schema:familyName Joskowicz
44 schema:givenName Leo
45 rdf:type schema:Person
46 N206267c10dba4309b40f040f124c37f4 schema:name doi
47 schema:value 10.1007/978-3-319-46723-8_75
48 rdf:type schema:PropertyValue
49 N286785453fb04a2dab1e666337daf0f5 rdf:first sg:person.01112664711.99
50 rdf:rest rdf:nil
51 N309efa1fb89448f182ddcefe14101ea8 rdf:first sg:person.012371073425.66
52 rdf:rest Nba1be6adf1b443ca8bc37bbf268f1e5f
53 N3d30eec9079347b9a29937ef99600e63 rdf:first Nd881d4803e0f4443ae0f3708867a4560
54 rdf:rest Nf8ebef0905bc4509ba19a846c9c24689
55 N3ef45e5f74ac44489199ac2a8fc238e3 schema:name dimensions_id
56 schema:value pub.1084908365
57 rdf:type schema:PropertyValue
58 N643e008ce31049059268e07122d9e557 rdf:first Nf62940f5e7754d53afb35eab1614e8e0
59 rdf:rest Ne619e2afc8664957baaabc2addd93477
60 N7a9435216dfb48fc9833e697d35d802f schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N9d9bcbf91df4446ba83a4283479561e8 rdf:first Na37d90150a9242bdb714654a12480cee
63 rdf:rest rdf:nil
64 Na37d90150a9242bdb714654a12480cee schema:familyName Wells
65 schema:givenName William
66 rdf:type schema:Person
67 Nae05437cc8fc4215b261970b911c622c schema:isbn 978-3-319-46722-1
68 978-3-319-46723-8
69 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016
70 rdf:type schema:Book
71 Nba1be6adf1b443ca8bc37bbf268f1e5f rdf:first sg:person.016157531760.59
72 rdf:rest N286785453fb04a2dab1e666337daf0f5
73 Nc507058415fe4df79ecbcef029f1d2f0 schema:familyName Unal
74 schema:givenName Gozde
75 rdf:type schema:Person
76 Nd881d4803e0f4443ae0f3708867a4560 schema:familyName Sabuncu
77 schema:givenName Mert R.
78 rdf:type schema:Person
79 Ne619e2afc8664957baaabc2addd93477 rdf:first N1c620347ce704b358c970d409485778c
80 rdf:rest N3d30eec9079347b9a29937ef99600e63
81 Nf3d128c07c7649a8b591f6dcee3ed4c8 schema:location Cham
82 schema:name Springer International Publishing
83 rdf:type schema:Organisation
84 Nf62940f5e7754d53afb35eab1614e8e0 schema:familyName Ourselin
85 schema:givenName Sebastien
86 rdf:type schema:Person
87 Nf8ebef0905bc4509ba19a846c9c24689 rdf:first Nc507058415fe4df79ecbcef029f1d2f0
88 rdf:rest N9d9bcbf91df4446ba83a4283479561e8
89 Nfa46da6d80d040039e8902d855ef1632 rdf:first sg:person.013771521251.02
90 rdf:rest N309efa1fb89448f182ddcefe14101ea8
91 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
92 schema:name Biological Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
95 schema:name Biochemistry and Cell Biology
96 rdf:type schema:DefinedTerm
97 sg:grant.3580590 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-46723-8_75
98 rdf:type schema:MonetaryGrant
99 sg:grant.3849808 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-46723-8_75
100 rdf:type schema:MonetaryGrant
101 sg:grant.3850050 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-46723-8_75
102 rdf:type schema:MonetaryGrant
103 sg:person.01112664711.99 schema:affiliation https://www.grid.ac/institutes/grid.267315.4
104 schema:familyName Huang
105 schema:givenName Junzhou
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112664711.99
107 rdf:type schema:Person
108 sg:person.012371073425.66 schema:affiliation https://www.grid.ac/institutes/grid.267315.4
109 schema:familyName Wang
110 schema:givenName Sheng
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012371073425.66
112 rdf:type schema:Person
113 sg:person.013771521251.02 schema:affiliation https://www.grid.ac/institutes/grid.267315.4
114 schema:familyName Yao
115 schema:givenName Jiawen
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013771521251.02
117 rdf:type schema:Person
118 sg:person.016157531760.59 schema:affiliation https://www.grid.ac/institutes/grid.267315.4
119 schema:familyName Zhu
120 schema:givenName Xinliang
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016157531760.59
122 rdf:type schema:Person
123 sg:pub.10.1007/978-3-319-24574-4_43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012246548
124 https://doi.org/10.1007/978-3-319-24574-4_43
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/978-3-319-24888-2_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047297175
127 https://doi.org/10.1007/978-3-319-24888-2_35
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/978-3-319-28194-0_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020855081
130 https://doi.org/10.1007/978-3-319-28194-0_10
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/nbt.2940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050302969
133 https://doi.org/10.1038/nbt.2940
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nm.1790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040467803
136 https://doi.org/10.1038/nm.1790
137 rdf:type schema:CreativeWork
138 sg:pub.10.1186/1471-2105-15-310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011145457
139 https://doi.org/10.1186/1471-2105-15-310
140 rdf:type schema:CreativeWork
141 sg:pub.10.1186/1471-2105-9-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034538282
142 https://doi.org/10.1186/1471-2105-9-14
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.media.2015.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018971064
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/isbi.2016.7493475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093766396
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1126/scitranslmed.3002564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003389409
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1126/scitranslmed.3004330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005234727
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1200/jco.2011.37.2185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022128964
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1214/08-aoas169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048372606
155 rdf:type schema:CreativeWork
156 https://www.grid.ac/institutes/grid.267315.4 schema:alternateName The University of Texas at Arlington
157 schema:name University of Texas at Arlington
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...