Pancreas Segmentation in MRI Using Graph-Based Decision Fusion on Convolutional Neural Networks View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2016

AUTHORS

Jinzheng Cai , Le Lu , Zizhao Zhang , Fuyong Xing , Lin Yang , Qian Yin

ABSTRACT

Automated pancreas segmentation in medical images is a prerequisite for many clinical applications, such as diabetes inspection, pancreatic cancer diagnosis, and surgical planing. In this paper, we formulate pancreas segmentation in magnetic resonance imaging (MRI) scans as a graph based decision fusion process combined with deep convolutional neural networks (CNN). Our approach conducts pancreatic detection and boundary segmentation with two types of CNN models respectively: 1) the tissue detection step to differentiate pancreas and non-pancreas tissue with spatial intensity context; 2) the boundary detection step to allocate the semantic boundaries of pancreas. Both detection results of the two networks are fused together as the initialization of a conditional random field (CRF) framework to obtain the final segmentation output. Our approach achieves the mean dice similarity coefficient (DSC) 76.1% with the standard deviation of 8.7% in a dataset containing 78 abdominal MRI scans. The proposed algorithm achieves the best results compared with other state of the arts. More... »

PAGES

442-450

References to SciGraph publications

Book

TITLE

Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016

ISBN

978-3-319-46722-1
978-3-319-46723-8

From Grant

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_51

DOI

http://dx.doi.org/10.1007/978-3-319-46723-8_51

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032895350

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28083570


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Department of Biomedical Engineering University of Florida Gainesville USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cai", 
        "givenName": "Jinzheng", 
        "id": "sg:person.015276612061.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015276612061.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology and Imaging Sciences National Institutes of Health Clinical Center Bethesda USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Le", 
        "id": "sg:person.01353423536.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Department of Computer Information and Science Engineering University of Florida Gainesville USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zizhao", 
        "id": "sg:person.014501231461.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014501231461.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Department of Electrical and Computer Engineering University of Florida Gainesville USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xing", 
        "givenName": "Fuyong", 
        "id": "sg:person.013551042145.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013551042145.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florida", 
          "id": "https://www.grid.ac/institutes/grid.15276.37", 
          "name": [
            "Department of Biomedical Engineering University of Florida Gainesville USA", 
            "Department of Electrical and Computer Engineering University of Florida Gainesville USA", 
            "Department of Computer Information and Science Engineering University of Florida Gainesville USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Lin", 
        "id": "sg:person.01305044435.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305044435.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fourth Military Medical University", 
          "id": "https://www.grid.ac/institutes/grid.233520.5", 
          "name": [
            "Department of Radiology, Tangdu Hospital The Fourth Military Medical University Xi\u2019an China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yin", 
        "givenName": "Qian", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1143844.1143966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026938737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10404-1_83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028311920", 
          "https://doi.org/10.1007/978-3-319-10404-1_83"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-24553-9_68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034209570", 
          "https://doi.org/10.1007/978-3-319-24553-9_68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2013.2265805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7298965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093626237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2015.164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094045097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2014.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094727707"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "Automated pancreas segmentation in medical images is a prerequisite for many clinical applications, such as diabetes inspection, pancreatic cancer diagnosis, and surgical planing. In this paper, we formulate pancreas segmentation in magnetic resonance imaging (MRI) scans as a graph based decision fusion process combined with deep convolutional neural networks (CNN). Our approach conducts pancreatic detection and boundary segmentation with two types of CNN models respectively: 1) the tissue detection step to differentiate pancreas and non-pancreas tissue with spatial intensity context; 2) the boundary detection step to allocate the semantic boundaries of pancreas. Both detection results of the two networks are fused together as the initialization of a conditional random field (CRF) framework to obtain the final segmentation output. Our approach achieves the mean dice similarity coefficient (DSC) 76.1% with the standard deviation of 8.7% in a dataset containing 78 abdominal MRI scans. The proposed algorithm achieves the best results compared with other state of the arts.", 
    "editor": [
      {
        "familyName": "Ourselin", 
        "givenName": "Sebastien", 
        "type": "Person"
      }, 
      {
        "familyName": "Joskowicz", 
        "givenName": "Leo", 
        "type": "Person"
      }, 
      {
        "familyName": "Sabuncu", 
        "givenName": "Mert R.", 
        "type": "Person"
      }, 
      {
        "familyName": "Unal", 
        "givenName": "Gozde", 
        "type": "Person"
      }, 
      {
        "familyName": "Wells", 
        "givenName": "William", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-46723-8_51", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3806924", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-319-46722-1", 
        "978-3-319-46723-8"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2016", 
      "type": "Book"
    }, 
    "name": "Pancreas Segmentation in MRI Using Graph-Based Decision Fusion on Convolutional Neural Networks", 
    "pagination": "442-450", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-46723-8_51"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9cb5bb653f8993600143e0edb8f2d5e954c9bd6f2fbc55ef02929098a4461e18"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032895350"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28083570"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-46723-8_51", 
      "https://app.dimensions.ai/details/publication/pub.1032895350"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T11:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000437.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-46723-8_51"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_51'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_51'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_51'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_51'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      23 PREDICATES      35 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-46723-8_51 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6f9d6c3ea3ad41deb1b96cee439ec571
4 schema:citation sg:pub.10.1007/978-3-319-10404-1_83
5 sg:pub.10.1007/978-3-319-24553-9_68
6 https://doi.org/10.1109/cvpr.2014.81
7 https://doi.org/10.1109/cvpr.2015.7298965
8 https://doi.org/10.1109/iccv.2015.164
9 https://doi.org/10.1109/tmi.2013.2265805
10 https://doi.org/10.1145/1143844.1143966
11 schema:datePublished 2016
12 schema:datePublishedReg 2016-01-01
13 schema:description Automated pancreas segmentation in medical images is a prerequisite for many clinical applications, such as diabetes inspection, pancreatic cancer diagnosis, and surgical planing. In this paper, we formulate pancreas segmentation in magnetic resonance imaging (MRI) scans as a graph based decision fusion process combined with deep convolutional neural networks (CNN). Our approach conducts pancreatic detection and boundary segmentation with two types of CNN models respectively: 1) the tissue detection step to differentiate pancreas and non-pancreas tissue with spatial intensity context; 2) the boundary detection step to allocate the semantic boundaries of pancreas. Both detection results of the two networks are fused together as the initialization of a conditional random field (CRF) framework to obtain the final segmentation output. Our approach achieves the mean dice similarity coefficient (DSC) 76.1% with the standard deviation of 8.7% in a dataset containing 78 abdominal MRI scans. The proposed algorithm achieves the best results compared with other state of the arts.
14 schema:editor Nee1d395512804cbb91bf3ec91dec5c1a
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N7e84314a9a1140a282a4d47322ea5c7b
19 schema:name Pancreas Segmentation in MRI Using Graph-Based Decision Fusion on Convolutional Neural Networks
20 schema:pagination 442-450
21 schema:productId N47a990e90b1f4a44be1450f57642a7ff
22 Nb8a14032159c4fd2b5c2c7560a1b465a
23 Nc93c8ce9ebce4508aa253868ad4522eb
24 Nfb214585d3fd4117ac11b9c83f55a59d
25 schema:publisher Naff2abd3fc5149d19e1bc142e7b9fb80
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032895350
27 https://doi.org/10.1007/978-3-319-46723-8_51
28 schema:sdDatePublished 2019-04-15T11:54
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Ndefdf66ed75942ccbe5be7b4a6888a37
31 schema:url http://link.springer.com/10.1007/978-3-319-46723-8_51
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N12beb1f9c0b547ebad0551a274cfe961 rdf:first Na7edfcb0f4fc476daa3e7f9ed0f75291
36 rdf:rest Nb8d748a92e194151a5a3851cea558394
37 N35710ec9936047278de0ecb480d14f0e rdf:first sg:person.01353423536.73
38 rdf:rest Ne46b6274c64f44fca229047b4e256614
39 N3c967a6d4da64294857013fe9ef66872 rdf:first N5c8f57dbec2142a0a045986dd22cf98c
40 rdf:rest rdf:nil
41 N47a990e90b1f4a44be1450f57642a7ff schema:name dimensions_id
42 schema:value pub.1032895350
43 rdf:type schema:PropertyValue
44 N592b1d1717584abaa2f9c8a148a9b945 schema:familyName Ourselin
45 schema:givenName Sebastien
46 rdf:type schema:Person
47 N5c8f57dbec2142a0a045986dd22cf98c schema:familyName Wells
48 schema:givenName William
49 rdf:type schema:Person
50 N6b79ef53875e4c5d8adbf34da1b602b0 rdf:first sg:person.01305044435.92
51 rdf:rest Nb445c6e93c8948a491e77a882a896ede
52 N6f9d6c3ea3ad41deb1b96cee439ec571 rdf:first sg:person.015276612061.48
53 rdf:rest N35710ec9936047278de0ecb480d14f0e
54 N7357f77568064c6786d46c9d7828acdb schema:familyName Unal
55 schema:givenName Gozde
56 rdf:type schema:Person
57 N7e84314a9a1140a282a4d47322ea5c7b schema:isbn 978-3-319-46722-1
58 978-3-319-46723-8
59 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016
60 rdf:type schema:Book
61 Na7edfcb0f4fc476daa3e7f9ed0f75291 schema:familyName Joskowicz
62 schema:givenName Leo
63 rdf:type schema:Person
64 Na92fe8b46ecf4eaabfeac2a78be7c8ef schema:name Department of Radiology and Imaging Sciences National Institutes of Health Clinical Center Bethesda USA
65 rdf:type schema:Organization
66 Nab829b445cc3440db8d78863e564dd2e rdf:first N7357f77568064c6786d46c9d7828acdb
67 rdf:rest N3c967a6d4da64294857013fe9ef66872
68 Naff2abd3fc5149d19e1bc142e7b9fb80 schema:location Cham
69 schema:name Springer International Publishing
70 rdf:type schema:Organisation
71 Nb445c6e93c8948a491e77a882a896ede rdf:first Nfeb131282856431db9f1719fa612f610
72 rdf:rest rdf:nil
73 Nb8a14032159c4fd2b5c2c7560a1b465a schema:name readcube_id
74 schema:value 9cb5bb653f8993600143e0edb8f2d5e954c9bd6f2fbc55ef02929098a4461e18
75 rdf:type schema:PropertyValue
76 Nb8d748a92e194151a5a3851cea558394 rdf:first Nc8e024e218124bde8128007bd3533441
77 rdf:rest Nab829b445cc3440db8d78863e564dd2e
78 Nbfce0bcb81684ed792f139173b581e8e rdf:first sg:person.013551042145.40
79 rdf:rest N6b79ef53875e4c5d8adbf34da1b602b0
80 Nc8e024e218124bde8128007bd3533441 schema:familyName Sabuncu
81 schema:givenName Mert R.
82 rdf:type schema:Person
83 Nc93c8ce9ebce4508aa253868ad4522eb schema:name doi
84 schema:value 10.1007/978-3-319-46723-8_51
85 rdf:type schema:PropertyValue
86 Ndefdf66ed75942ccbe5be7b4a6888a37 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Ne46b6274c64f44fca229047b4e256614 rdf:first sg:person.014501231461.12
89 rdf:rest Nbfce0bcb81684ed792f139173b581e8e
90 Nee1d395512804cbb91bf3ec91dec5c1a rdf:first N592b1d1717584abaa2f9c8a148a9b945
91 rdf:rest N12beb1f9c0b547ebad0551a274cfe961
92 Nfb214585d3fd4117ac11b9c83f55a59d schema:name pubmed_id
93 schema:value 28083570
94 rdf:type schema:PropertyValue
95 Nfeb131282856431db9f1719fa612f610 schema:affiliation https://www.grid.ac/institutes/grid.233520.5
96 schema:familyName Yin
97 schema:givenName Qian
98 rdf:type schema:Person
99 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
100 schema:name Information and Computing Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
103 schema:name Artificial Intelligence and Image Processing
104 rdf:type schema:DefinedTerm
105 sg:grant.3806924 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-46723-8_51
106 rdf:type schema:MonetaryGrant
107 sg:person.01305044435.92 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
108 schema:familyName Yang
109 schema:givenName Lin
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305044435.92
111 rdf:type schema:Person
112 sg:person.01353423536.73 schema:affiliation Na92fe8b46ecf4eaabfeac2a78be7c8ef
113 schema:familyName Lu
114 schema:givenName Le
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73
116 rdf:type schema:Person
117 sg:person.013551042145.40 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
118 schema:familyName Xing
119 schema:givenName Fuyong
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013551042145.40
121 rdf:type schema:Person
122 sg:person.014501231461.12 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
123 schema:familyName Zhang
124 schema:givenName Zizhao
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014501231461.12
126 rdf:type schema:Person
127 sg:person.015276612061.48 schema:affiliation https://www.grid.ac/institutes/grid.15276.37
128 schema:familyName Cai
129 schema:givenName Jinzheng
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015276612061.48
131 rdf:type schema:Person
132 sg:pub.10.1007/978-3-319-10404-1_83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028311920
133 https://doi.org/10.1007/978-3-319-10404-1_83
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/978-3-319-24553-9_68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034209570
136 https://doi.org/10.1007/978-3-319-24553-9_68
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/cvpr.2014.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094727707
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/cvpr.2015.7298965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093626237
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/iccv.2015.164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094045097
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/tmi.2013.2265805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696121
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1145/1143844.1143966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026938737
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.15276.37 schema:alternateName University of Florida
149 schema:name Department of Biomedical Engineering University of Florida Gainesville USA
150 Department of Computer Information and Science Engineering University of Florida Gainesville USA
151 Department of Electrical and Computer Engineering University of Florida Gainesville USA
152 rdf:type schema:Organization
153 https://www.grid.ac/institutes/grid.233520.5 schema:alternateName Fourth Military Medical University
154 schema:name Department of Radiology, Tangdu Hospital The Fourth Military Medical University Xi’an China
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...