3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2016

AUTHORS

Özgün Çiçek , Ahmed Abdulkadir , Soeren S. Lienkamp , Thomas Brox , Olaf Ronneberger

ABSTRACT

This paper introduces a network for volumetric segmentation that learns from sparsely annotated volumetric images. We outline two attractive use cases of this method: (1) In a semi-automated setup, the user annotates some slices in the volume to be segmented. The network learns from these sparse annotations and provides a dense 3D segmentation. (2) In a fully-automated setup, we assume that a representative, sparsely annotated training set exists. Trained on this data set, the network densely segments new volumetric images. The proposed network extends the previous u-net architecture from Ronneberger et al. by replacing all 2D operations with their 3D counterparts. The implementation performs on-the-fly elastic deformations for efficient data augmentation during training. It is trained end-to-end from scratch, i.e., no pre-trained network is required. We test the performance of the proposed method on a complex, highly variable 3D structure, the Xenopus kidney, and achieve good results for both use cases. More... »

PAGES

424-432

References to SciGraph publications

Book

TITLE

Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016

ISBN

978-3-319-46722-1
978-3-319-46723-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_49

DOI

http://dx.doi.org/10.1007/978-3-319-46723-8_49

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084908686


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Freiburg", 
          "id": "https://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "University of Freiburg", 
            "BIOSS Centre for Biological Signalling Studies"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u00c7i\u00e7ek", 
        "givenName": "\u00d6zg\u00fcn", 
        "id": "sg:person.016314276446.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016314276446.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Medical Center Freiburg", 
          "id": "https://www.grid.ac/institutes/grid.7708.8", 
          "name": [
            "University of Freiburg", 
            "University Medical Center Freiburg"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abdulkadir", 
        "givenName": "Ahmed", 
        "id": "sg:person.0623123342.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623123342.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Freiburg", 
          "id": "https://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "BIOSS Centre for Biological Signalling Studies", 
            "University of Freiburg"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lienkamp", 
        "givenName": "Soeren S.", 
        "id": "sg:person.01235033065.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235033065.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Freiburg", 
          "id": "https://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "University of Freiburg", 
            "BIOSS Centre for Biological Signalling Studies"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brox", 
        "givenName": "Thomas", 
        "id": "sg:person.012443225372.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Freiburg", 
          "id": "https://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "University of Freiburg", 
            "BIOSS Centre for Biological Signalling Studies", 
            "Google DeepMind"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ronneberger", 
        "givenName": "Olaf", 
        "id": "sg:person.0625370723.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625370723.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.mri.2012.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003426949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2016.01.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007991390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-24574-4_28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017774818", 
          "https://doi.org/10.1007/978-3-319-24574-4_28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1013070107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019438878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2818.2008.03094.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035938597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2647868.2654889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052031051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2013.269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079004280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cviu.2017.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084860497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2016.308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093497718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7298965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093626237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvprw.2016.57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094641351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7298642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095686079"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "This paper introduces a network for volumetric segmentation that learns from sparsely annotated volumetric images. We outline two attractive use cases of this method: (1) In a semi-automated setup, the user annotates some slices in the volume to be segmented. The network learns from these sparse annotations and provides a dense 3D segmentation. (2) In a fully-automated setup, we assume that a representative, sparsely annotated training set exists. Trained on this data set, the network densely segments new volumetric images. The proposed network extends the previous u-net architecture from Ronneberger et al. by replacing all 2D operations with their 3D counterparts. The implementation performs on-the-fly elastic deformations for efficient data augmentation during training. It is trained end-to-end from scratch, i.e., no pre-trained network is required. We test the performance of the proposed method on a complex, highly variable 3D structure, the Xenopus kidney, and achieve good results for both use cases.", 
    "editor": [
      {
        "familyName": "Ourselin", 
        "givenName": "Sebastien", 
        "type": "Person"
      }, 
      {
        "familyName": "Joskowicz", 
        "givenName": "Leo", 
        "type": "Person"
      }, 
      {
        "familyName": "Sabuncu", 
        "givenName": "Mert R.", 
        "type": "Person"
      }, 
      {
        "familyName": "Unal", 
        "givenName": "Gozde", 
        "type": "Person"
      }, 
      {
        "familyName": "Wells", 
        "givenName": "William", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-46723-8_49", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-46722-1", 
        "978-3-319-46723-8"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2016", 
      "type": "Book"
    }, 
    "name": "3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation", 
    "pagination": "424-432", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-46723-8_49"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8767df73de93026ecd07225436f2fe02d091ea040f22c39f19ceff5847d5d9af"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084908686"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-46723-8_49", 
      "https://app.dimensions.ai/details/publication/pub.1084908686"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000279.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-46723-8_49"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_49'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_49'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_49'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_49'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-46723-8_49 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N37004c0d0d7e44d4949d7a6916e6ebc0
4 schema:citation sg:pub.10.1007/978-3-319-24574-4_28
5 https://doi.org/10.1016/j.cviu.2017.04.002
6 https://doi.org/10.1016/j.mri.2012.05.001
7 https://doi.org/10.1016/j.neuroimage.2016.01.024
8 https://doi.org/10.1073/pnas.1013070107
9 https://doi.org/10.1109/cvpr.2015.7298642
10 https://doi.org/10.1109/cvpr.2015.7298965
11 https://doi.org/10.1109/cvpr.2016.308
12 https://doi.org/10.1109/cvprw.2016.57
13 https://doi.org/10.1109/iccv.2013.269
14 https://doi.org/10.1111/j.1365-2818.2008.03094.x
15 https://doi.org/10.1145/2647868.2654889
16 schema:datePublished 2016
17 schema:datePublishedReg 2016-01-01
18 schema:description This paper introduces a network for volumetric segmentation that learns from sparsely annotated volumetric images. We outline two attractive use cases of this method: (1) In a semi-automated setup, the user annotates some slices in the volume to be segmented. The network learns from these sparse annotations and provides a dense 3D segmentation. (2) In a fully-automated setup, we assume that a representative, sparsely annotated training set exists. Trained on this data set, the network densely segments new volumetric images. The proposed network extends the previous u-net architecture from Ronneberger et al. by replacing all 2D operations with their 3D counterparts. The implementation performs on-the-fly elastic deformations for efficient data augmentation during training. It is trained end-to-end from scratch, i.e., no pre-trained network is required. We test the performance of the proposed method on a complex, highly variable 3D structure, the Xenopus kidney, and achieve good results for both use cases.
19 schema:editor Nec96188f21eb44c49be3a6b566aa61f6
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf Nb2526b13cafe4de4b55ff0088e19be52
24 schema:name 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
25 schema:pagination 424-432
26 schema:productId N32f9f951e0f7459ea076860272198829
27 N74b2e4234dec46038572564b698a2b3e
28 N8d297c5bcb554c13916b9b71fb58da16
29 schema:publisher N2f72a972a8b647d2bfeadbd622038c2e
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084908686
31 https://doi.org/10.1007/978-3-319-46723-8_49
32 schema:sdDatePublished 2019-04-15T16:20
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Nb2e86a5f59564816a868a75e4a6b1f01
35 schema:url http://link.springer.com/10.1007/978-3-319-46723-8_49
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N15ef6ee0976d480b8efdf740a5bc9f7f schema:familyName Wells
40 schema:givenName William
41 rdf:type schema:Person
42 N1de9788754b24c0b8a63433615caef55 rdf:first Nc8ca324a0c8640bcbf6c7fc423449d6d
43 rdf:rest N79b7b0716c494a58a439aeeb49f07920
44 N23e0689ee9474cc9a0a4b753b4b86a7e rdf:first sg:person.01235033065.65
45 rdf:rest Nb17db90851024248881dc9dc2cd28e4a
46 N2f72a972a8b647d2bfeadbd622038c2e schema:location Cham
47 schema:name Springer International Publishing
48 rdf:type schema:Organisation
49 N32f9f951e0f7459ea076860272198829 schema:name readcube_id
50 schema:value 8767df73de93026ecd07225436f2fe02d091ea040f22c39f19ceff5847d5d9af
51 rdf:type schema:PropertyValue
52 N37004c0d0d7e44d4949d7a6916e6ebc0 rdf:first sg:person.016314276446.01
53 rdf:rest N65e5eaa016dd4792b50d2ee2d579ebb7
54 N519705879718405a897231bf338530e3 schema:familyName Ourselin
55 schema:givenName Sebastien
56 rdf:type schema:Person
57 N65e5eaa016dd4792b50d2ee2d579ebb7 rdf:first sg:person.0623123342.36
58 rdf:rest N23e0689ee9474cc9a0a4b753b4b86a7e
59 N74b2e4234dec46038572564b698a2b3e schema:name dimensions_id
60 schema:value pub.1084908686
61 rdf:type schema:PropertyValue
62 N79b7b0716c494a58a439aeeb49f07920 rdf:first N15ef6ee0976d480b8efdf740a5bc9f7f
63 rdf:rest rdf:nil
64 N819f6f1ac8b14ea88ab4dd866bf4a881 schema:familyName Joskowicz
65 schema:givenName Leo
66 rdf:type schema:Person
67 N8d297c5bcb554c13916b9b71fb58da16 schema:name doi
68 schema:value 10.1007/978-3-319-46723-8_49
69 rdf:type schema:PropertyValue
70 N94310a7f68ea42e0944e3aa93305c0ba rdf:first N9f74c20a7b5a4575a18c187913d12407
71 rdf:rest N1de9788754b24c0b8a63433615caef55
72 N9f74c20a7b5a4575a18c187913d12407 schema:familyName Sabuncu
73 schema:givenName Mert R.
74 rdf:type schema:Person
75 Nb17db90851024248881dc9dc2cd28e4a rdf:first sg:person.012443225372.65
76 rdf:rest Nc311d63ad15d4c5da96aa151cee1115e
77 Nb2526b13cafe4de4b55ff0088e19be52 schema:isbn 978-3-319-46722-1
78 978-3-319-46723-8
79 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016
80 rdf:type schema:Book
81 Nb2e86a5f59564816a868a75e4a6b1f01 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 Nc311d63ad15d4c5da96aa151cee1115e rdf:first sg:person.0625370723.52
84 rdf:rest rdf:nil
85 Nc8ca324a0c8640bcbf6c7fc423449d6d schema:familyName Unal
86 schema:givenName Gozde
87 rdf:type schema:Person
88 Nec96188f21eb44c49be3a6b566aa61f6 rdf:first N519705879718405a897231bf338530e3
89 rdf:rest Nf5474f09267b4816aeeb47dc15bb6009
90 Nf5474f09267b4816aeeb47dc15bb6009 rdf:first N819f6f1ac8b14ea88ab4dd866bf4a881
91 rdf:rest N94310a7f68ea42e0944e3aa93305c0ba
92 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
93 schema:name Information and Computing Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
96 schema:name Artificial Intelligence and Image Processing
97 rdf:type schema:DefinedTerm
98 sg:person.01235033065.65 schema:affiliation https://www.grid.ac/institutes/grid.5963.9
99 schema:familyName Lienkamp
100 schema:givenName Soeren S.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235033065.65
102 rdf:type schema:Person
103 sg:person.012443225372.65 schema:affiliation https://www.grid.ac/institutes/grid.5963.9
104 schema:familyName Brox
105 schema:givenName Thomas
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65
107 rdf:type schema:Person
108 sg:person.016314276446.01 schema:affiliation https://www.grid.ac/institutes/grid.5963.9
109 schema:familyName Çiçek
110 schema:givenName Özgün
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016314276446.01
112 rdf:type schema:Person
113 sg:person.0623123342.36 schema:affiliation https://www.grid.ac/institutes/grid.7708.8
114 schema:familyName Abdulkadir
115 schema:givenName Ahmed
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623123342.36
117 rdf:type schema:Person
118 sg:person.0625370723.52 schema:affiliation https://www.grid.ac/institutes/grid.5963.9
119 schema:familyName Ronneberger
120 schema:givenName Olaf
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625370723.52
122 rdf:type schema:Person
123 sg:pub.10.1007/978-3-319-24574-4_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017774818
124 https://doi.org/10.1007/978-3-319-24574-4_28
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.cviu.2017.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084860497
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.mri.2012.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003426949
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.neuroimage.2016.01.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007991390
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1073/pnas.1013070107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019438878
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/cvpr.2015.7298642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095686079
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/cvpr.2015.7298965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093626237
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/cvpr.2016.308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093497718
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/cvprw.2016.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094641351
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/iccv.2013.269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079004280
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1111/j.1365-2818.2008.03094.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035938597
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1145/2647868.2654889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052031051
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.5963.9 schema:alternateName University of Freiburg
149 schema:name BIOSS Centre for Biological Signalling Studies
150 Google DeepMind
151 University of Freiburg
152 rdf:type schema:Organization
153 https://www.grid.ac/institutes/grid.7708.8 schema:alternateName University Medical Center Freiburg
154 schema:name University Medical Center Freiburg
155 University of Freiburg
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...