3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2016-10-02

AUTHORS

Özgün Çiçek , Ahmed Abdulkadir , Soeren S. Lienkamp , Thomas Brox , Olaf Ronneberger

ABSTRACT

This paper introduces a network for volumetric segmentation that learns from sparsely annotated volumetric images. We outline two attractive use cases of this method: (1) In a semi-automated setup, the user annotates some slices in the volume to be segmented. The network learns from these sparse annotations and provides a dense 3D segmentation. (2) In a fully-automated setup, we assume that a representative, sparsely annotated training set exists. Trained on this data set, the network densely segments new volumetric images. The proposed network extends the previous u-net architecture from Ronneberger et al. by replacing all 2D operations with their 3D counterparts. The implementation performs on-the-fly elastic deformations for efficient data augmentation during training. It is trained end-to-end from scratch, i.e., no pre-trained network is required. We test the performance of the proposed method on a complex, highly variable 3D structure, the Xenopus kidney, and achieve good results for both use cases. More... »

PAGES

424-432

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_49

DOI

http://dx.doi.org/10.1007/978-3-319-46723-8_49

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084908686


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "BIOSS Centre for Biological Signalling Studies, Freiburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "Computer Science Department, University of Freiburg, Freiburg, Germany", 
            "BIOSS Centre for Biological Signalling Studies, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u00c7i\u00e7ek", 
        "givenName": "\u00d6zg\u00fcn", 
        "id": "sg:person.016314276446.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016314276446.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Psychiatry and Psychotherapy, University Medical Center Freiburg, Freiburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7708.8", 
          "name": [
            "Computer Science Department, University of Freiburg, Freiburg, Germany", 
            "Department of Psychiatry and Psychotherapy, University Medical Center Freiburg, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abdulkadir", 
        "givenName": "Ahmed", 
        "id": "sg:person.0623123342.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623123342.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital Freiburg, Renal Division, Faculty of Medicine, University of Freiburg, Freiburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "BIOSS Centre for Biological Signalling Studies, Freiburg, Germany", 
            "University Hospital Freiburg, Renal Division, Faculty of Medicine, University of Freiburg, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lienkamp", 
        "givenName": "Soeren S.", 
        "id": "sg:person.01235033065.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235033065.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "BIOSS Centre for Biological Signalling Studies, Freiburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "Computer Science Department, University of Freiburg, Freiburg, Germany", 
            "BIOSS Centre for Biological Signalling Studies, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brox", 
        "givenName": "Thomas", 
        "id": "sg:person.012443225372.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Google DeepMind, London, UK", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Computer Science Department, University of Freiburg, Freiburg, Germany", 
            "BIOSS Centre for Biological Signalling Studies, Freiburg, Germany", 
            "Google DeepMind, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ronneberger", 
        "givenName": "Olaf", 
        "id": "sg:person.0625370723.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625370723.52"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-10-02", 
    "datePublishedReg": "2016-10-02", 
    "description": "This paper introduces a network for volumetric segmentation that learns from sparsely annotated volumetric images. We outline two attractive use cases of this method: (1) In a semi-automated setup, the user annotates some slices in the volume to be segmented. The network learns from these sparse annotations and provides a dense 3D segmentation. (2) In a fully-automated setup, we assume that a representative, sparsely annotated training set exists. Trained on this data set, the network densely segments new volumetric images. The proposed network extends the previous u-net architecture from Ronneberger et al. by replacing all 2D operations with their 3D counterparts. The implementation performs on-the-fly elastic deformations for efficient data augmentation during training. It is trained end-to-end from scratch, i.e., no pre-trained network is required. We test the performance of the proposed method on a complex, highly variable 3D structure, the Xenopus kidney, and achieve good results for both use cases.", 
    "editor": [
      {
        "familyName": "Ourselin", 
        "givenName": "Sebastien", 
        "type": "Person"
      }, 
      {
        "familyName": "Joskowicz", 
        "givenName": "Leo", 
        "type": "Person"
      }, 
      {
        "familyName": "Sabuncu", 
        "givenName": "Mert R.", 
        "type": "Person"
      }, 
      {
        "familyName": "Unal", 
        "givenName": "Gozde", 
        "type": "Person"
      }, 
      {
        "familyName": "Wells", 
        "givenName": "William", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-46723-8_49", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-46722-1", 
        "978-3-319-46723-8"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2016", 
      "type": "Book"
    }, 
    "keywords": [
      "use cases", 
      "sparse annotations", 
      "volumetric segmentation", 
      "volumetric images", 
      "pre-trained network", 
      "efficient data augmentation", 
      "attractive use cases", 
      "data augmentation", 
      "Net architecture", 
      "U-Net", 
      "segmentation", 
      "network", 
      "data sets", 
      "annotation", 
      "images", 
      "set exists", 
      "better results", 
      "users", 
      "architecture", 
      "scratch", 
      "implementation", 
      "setup", 
      "set", 
      "method", 
      "performance", 
      "operation", 
      "training", 
      "end", 
      "augmentation", 
      "slices", 
      "et al", 
      "results", 
      "cases", 
      "Xenopus kidney", 
      "structure", 
      "exists", 
      "counterparts", 
      "volume", 
      "representatives", 
      "al", 
      "elastic deformation", 
      "deformation", 
      "paper", 
      "kidney"
    ], 
    "name": "3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation", 
    "pagination": "424-432", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084908686"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-46723-8_49"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-46723-8_49", 
      "https://app.dimensions.ai/details/publication/pub.1084908686"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_391.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-46723-8_49"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_49'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_49'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_49'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_49'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      22 PREDICATES      68 URIs      61 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-46723-8_49 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N288ba9d4e409420bb239afd83799ef96
4 schema:datePublished 2016-10-02
5 schema:datePublishedReg 2016-10-02
6 schema:description This paper introduces a network for volumetric segmentation that learns from sparsely annotated volumetric images. We outline two attractive use cases of this method: (1) In a semi-automated setup, the user annotates some slices in the volume to be segmented. The network learns from these sparse annotations and provides a dense 3D segmentation. (2) In a fully-automated setup, we assume that a representative, sparsely annotated training set exists. Trained on this data set, the network densely segments new volumetric images. The proposed network extends the previous u-net architecture from Ronneberger et al. by replacing all 2D operations with their 3D counterparts. The implementation performs on-the-fly elastic deformations for efficient data augmentation during training. It is trained end-to-end from scratch, i.e., no pre-trained network is required. We test the performance of the proposed method on a complex, highly variable 3D structure, the Xenopus kidney, and achieve good results for both use cases.
7 schema:editor N99593cb741df44f7804f77821a6e556f
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N7e554e2bcae64ec0a424f57d8f16d4e7
11 schema:keywords Net architecture
12 U-Net
13 Xenopus kidney
14 al
15 annotation
16 architecture
17 attractive use cases
18 augmentation
19 better results
20 cases
21 counterparts
22 data augmentation
23 data sets
24 deformation
25 efficient data augmentation
26 elastic deformation
27 end
28 et al
29 exists
30 images
31 implementation
32 kidney
33 method
34 network
35 operation
36 paper
37 performance
38 pre-trained network
39 representatives
40 results
41 scratch
42 segmentation
43 set
44 set exists
45 setup
46 slices
47 sparse annotations
48 structure
49 training
50 use cases
51 users
52 volume
53 volumetric images
54 volumetric segmentation
55 schema:name 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
56 schema:pagination 424-432
57 schema:productId N18331934baa64cce87df50ae1056723b
58 N9f5cbe61a98f401cb894a00203677d9a
59 schema:publisher Na35bea8783934dd79f74ec7ba531a14d
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084908686
61 https://doi.org/10.1007/978-3-319-46723-8_49
62 schema:sdDatePublished 2022-10-01T06:58
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N928f39d0f60c46acb0a09e38dcb0fa78
65 schema:url https://doi.org/10.1007/978-3-319-46723-8_49
66 sgo:license sg:explorer/license/
67 sgo:sdDataset chapters
68 rdf:type schema:Chapter
69 N18331934baa64cce87df50ae1056723b schema:name dimensions_id
70 schema:value pub.1084908686
71 rdf:type schema:PropertyValue
72 N1e95889d916d462d976233dc0e76de85 rdf:first N3850c4d10630444a82f133b013b856cc
73 rdf:rest N1fa7e9256e3f472aae888df58c67727d
74 N1fa7e9256e3f472aae888df58c67727d rdf:first N499829bb627d4606a2e9531cdfc2111f
75 rdf:rest N819406bdf19b4dd5a86f23a58e6b4dea
76 N288ba9d4e409420bb239afd83799ef96 rdf:first sg:person.016314276446.01
77 rdf:rest N50540feca57f485a95ae82a718eb7fdb
78 N29bc5cc055c243a6a2a8e63d99dacf23 rdf:first sg:person.01235033065.65
79 rdf:rest Nd1f1bf3cedc045b4832bc8ddd1581e11
80 N3850c4d10630444a82f133b013b856cc schema:familyName Joskowicz
81 schema:givenName Leo
82 rdf:type schema:Person
83 N499829bb627d4606a2e9531cdfc2111f schema:familyName Sabuncu
84 schema:givenName Mert R.
85 rdf:type schema:Person
86 N50540feca57f485a95ae82a718eb7fdb rdf:first sg:person.0623123342.36
87 rdf:rest N29bc5cc055c243a6a2a8e63d99dacf23
88 N643de164001a4725aecb7146d3f68836 rdf:first sg:person.0625370723.52
89 rdf:rest rdf:nil
90 N70b76d8eafde405da92b0f6cf55db484 schema:familyName Ourselin
91 schema:givenName Sebastien
92 rdf:type schema:Person
93 N7e554e2bcae64ec0a424f57d8f16d4e7 schema:isbn 978-3-319-46722-1
94 978-3-319-46723-8
95 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016
96 rdf:type schema:Book
97 N819406bdf19b4dd5a86f23a58e6b4dea rdf:first Nfedf9d63f58a461eaca792e0af50a503
98 rdf:rest Ne0f925a72ff64f4bb706d555b1964db7
99 N928f39d0f60c46acb0a09e38dcb0fa78 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 N99593cb741df44f7804f77821a6e556f rdf:first N70b76d8eafde405da92b0f6cf55db484
102 rdf:rest N1e95889d916d462d976233dc0e76de85
103 N9f5cbe61a98f401cb894a00203677d9a schema:name doi
104 schema:value 10.1007/978-3-319-46723-8_49
105 rdf:type schema:PropertyValue
106 Na35bea8783934dd79f74ec7ba531a14d schema:name Springer Nature
107 rdf:type schema:Organisation
108 Nbc76707c45c54482b3305563ba83707b schema:familyName Wells
109 schema:givenName William
110 rdf:type schema:Person
111 Nd1f1bf3cedc045b4832bc8ddd1581e11 rdf:first sg:person.012443225372.65
112 rdf:rest N643de164001a4725aecb7146d3f68836
113 Ne0f925a72ff64f4bb706d555b1964db7 rdf:first Nbc76707c45c54482b3305563ba83707b
114 rdf:rest rdf:nil
115 Nfedf9d63f58a461eaca792e0af50a503 schema:familyName Unal
116 schema:givenName Gozde
117 rdf:type schema:Person
118 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
119 schema:name Information and Computing Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
122 schema:name Artificial Intelligence and Image Processing
123 rdf:type schema:DefinedTerm
124 sg:person.01235033065.65 schema:affiliation grid-institutes:grid.5963.9
125 schema:familyName Lienkamp
126 schema:givenName Soeren S.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235033065.65
128 rdf:type schema:Person
129 sg:person.012443225372.65 schema:affiliation grid-institutes:grid.5963.9
130 schema:familyName Brox
131 schema:givenName Thomas
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65
133 rdf:type schema:Person
134 sg:person.016314276446.01 schema:affiliation grid-institutes:grid.5963.9
135 schema:familyName Çiçek
136 schema:givenName Özgün
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016314276446.01
138 rdf:type schema:Person
139 sg:person.0623123342.36 schema:affiliation grid-institutes:grid.7708.8
140 schema:familyName Abdulkadir
141 schema:givenName Ahmed
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623123342.36
143 rdf:type schema:Person
144 sg:person.0625370723.52 schema:affiliation grid-institutes:None
145 schema:familyName Ronneberger
146 schema:givenName Olaf
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625370723.52
148 rdf:type schema:Person
149 grid-institutes:None schema:alternateName Google DeepMind, London, UK
150 schema:name BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
151 Computer Science Department, University of Freiburg, Freiburg, Germany
152 Google DeepMind, London, UK
153 rdf:type schema:Organization
154 grid-institutes:grid.5963.9 schema:alternateName BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
155 University Hospital Freiburg, Renal Division, Faculty of Medicine, University of Freiburg, Freiburg, Germany
156 schema:name BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
157 Computer Science Department, University of Freiburg, Freiburg, Germany
158 University Hospital Freiburg, Renal Division, Faculty of Medicine, University of Freiburg, Freiburg, Germany
159 rdf:type schema:Organization
160 grid-institutes:grid.7708.8 schema:alternateName Department of Psychiatry and Psychotherapy, University Medical Center Freiburg, Freiburg, Germany
161 schema:name Computer Science Department, University of Freiburg, Freiburg, Germany
162 Department of Psychiatry and Psychotherapy, University Medical Center Freiburg, Freiburg, Germany
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...