Automatic Lymph Node Cluster Segmentation Using Holistically-Nested Neural Networks and Structured Optimization in CT Images View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Isabella Nogues , Le Lu , Xiaosong Wang , Holger Roth , Gedas Bertasius , Nathan Lay , Jianbo Shi , Yohannes Tsehay , Ronald M. Summers

ABSTRACT

Lymph node segmentation is an important yet challenging problem in medical image analysis. The presence of enlarged lymph nodes (LNs) signals the onset or progression of a malignant disease or infection. In the thoracoabdominal (TA) body region, neighboring enlarged LNs often spatially collapse into “swollen” lymph node clusters (LNCs) (up to 9 LNs in our dataset). Accurate segmentation of TA LNCs is complexified by the noticeably poor intensity and texture contrast among neighboring LNs and surrounding tissues, and has not been addressed in previous work. This paper presents a novel approach to TA LNC segmentation that combines holistically-nested neural networks (HNNs) and structured optimization (SO). Two HNNs, built upon recent fully convolutional networks (FCNs) and deeply supervised networks (DSNs), are trained to learn the LNC appearance (HNN-A) or contour (HNN-C) probabilistic output maps, respectively. HNN first produces the class label maps with the same resolution as the input image, like FCN. Afterwards, HNN predictions for LNC appearance and contour cues are formulated into the unary and pairwise terms of conditional random fields (CRFs), which are subsequently solved using one of three different SO methods: dense CRF, graph cuts, and boundary neural fields (BNF). BNF yields the highest quantitative results. Its mean Dice coefficient between segmented and ground truth LN volumes is 82.1 % ± 9.6 %, compared to 73.0 % ± 17.6 % for HNN-A alone. The LNC relative volume (\(cm^3\)) difference is 13.7 % ± 13.1 %, a promising result for the development of LN imaging biomarkers based on volumetric measurements. More... »

PAGES

388-397

References to SciGraph publications

  • 2015. Leveraging Mid-Level Semantic Boundary Cues for Automated Lymph Node Detection in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION -- MICCAI 2015
  • 2006-11. Graph Cuts and Efficient N-D Image Segmentation in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2006. Segmentation of Neck Lymph Nodes in CT Datasets with Stable 3D Mass-Spring Models in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2006
  • 2016. Spatial Aggregation of Holistically-Nested Networks for Automated Pancreas Segmentation in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2016
  • Book

    TITLE

    Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016

    ISBN

    978-3-319-46722-1
    978-3-319-46723-8

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_45

    DOI

    http://dx.doi.org/10.1007/978-3-319-46723-8_45

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084914058


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "National Institutes of Health Clinical Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nogues", 
            "givenName": "Isabella", 
            "id": "sg:person.07400503505.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07400503505.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "National Institutes of Health Clinical Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Le", 
            "id": "sg:person.01353423536.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "National Institutes of Health Clinical Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Xiaosong", 
            "id": "sg:person.012233025131.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012233025131.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "National Institutes of Health Clinical Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Roth", 
            "givenName": "Holger", 
            "id": "sg:person.01331447262.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331447262.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Pennsylvania", 
              "id": "https://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "University of Pennsylvania"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bertasius", 
            "givenName": "Gedas", 
            "id": "sg:person.010640125611.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010640125611.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "National Institutes of Health Clinical Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lay", 
            "givenName": "Nathan", 
            "id": "sg:person.012003722630.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012003722630.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Pennsylvania", 
              "id": "https://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "University of Pennsylvania"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "Jianbo", 
            "id": "sg:person.01046552004.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046552004.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "National Institutes of Health Clinical Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tsehay", 
            "givenName": "Yohannes", 
            "id": "sg:person.015152613731.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015152613731.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "National Institutes of Health Clinical Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Summers", 
            "givenName": "Ronald M.", 
            "id": "sg:person.011331054577.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.ejca.2008.10.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003325493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijrobp.2009.09.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009988680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2012.11.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011379533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2012.11.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011379533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-006-7934-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026896150", 
              "https://doi.org/10.1007/s11263-006-7934-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11866763_111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036983855", 
              "https://doi.org/10.1007/11866763_111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11866763_111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036983855", 
              "https://doi.org/10.1007/11866763_111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2004.1273918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050308038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-24571-3_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050944423", 
              "https://doi.org/10.1007/978-3-319-24571-3_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2011.2168234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061695796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46723-8_52", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084904832", 
              "https://doi.org/10.1007/978-3-319-46723-8_52"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2016.392", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093532199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2015.7298965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093626237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2015.164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094045097"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016", 
        "datePublishedReg": "2016-01-01", 
        "description": "Lymph node segmentation is an important yet challenging problem in medical image analysis. The presence of enlarged lymph nodes (LNs) signals the onset or progression of a malignant disease or infection. In the thoracoabdominal (TA) body region, neighboring enlarged LNs often spatially collapse into \u201cswollen\u201d lymph node clusters (LNCs) (up to 9 LNs in our dataset). Accurate segmentation of TA LNCs is complexified by the noticeably poor intensity and texture contrast among neighboring LNs and surrounding tissues, and has not been addressed in previous work. This paper presents a novel approach to TA LNC segmentation that combines holistically-nested neural networks (HNNs) and structured optimization (SO). Two HNNs, built upon recent fully convolutional networks (FCNs) and deeply supervised networks (DSNs), are trained to learn the LNC appearance (HNN-A) or contour (HNN-C) probabilistic output maps, respectively. HNN first produces the class label maps with the same resolution as the input image, like FCN. Afterwards, HNN predictions for LNC appearance and contour cues are formulated into the unary and pairwise terms of conditional random fields (CRFs), which are subsequently solved using one of three different SO methods: dense CRF, graph cuts, and boundary neural fields (BNF). BNF yields the highest quantitative results. Its mean Dice coefficient between segmented and ground truth LN volumes is 82.1 % \u00b1 9.6 %, compared to 73.0 % \u00b1 17.6 % for HNN-A alone. The LNC relative volume (\\(cm^3\\)) difference is 13.7 % \u00b1 13.1 %, a promising result for the development of LN imaging biomarkers based on volumetric measurements.", 
        "editor": [
          {
            "familyName": "Ourselin", 
            "givenName": "Sebastien", 
            "type": "Person"
          }, 
          {
            "familyName": "Joskowicz", 
            "givenName": "Leo", 
            "type": "Person"
          }, 
          {
            "familyName": "Sabuncu", 
            "givenName": "Mert R.", 
            "type": "Person"
          }, 
          {
            "familyName": "Unal", 
            "givenName": "Gozde", 
            "type": "Person"
          }, 
          {
            "familyName": "Wells", 
            "givenName": "William", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-46723-8_45", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-46722-1", 
            "978-3-319-46723-8"
          ], 
          "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2016", 
          "type": "Book"
        }, 
        "name": "Automatic Lymph Node Cluster Segmentation Using Holistically-Nested Neural Networks and\u00a0Structured Optimization in CT Images", 
        "pagination": "388-397", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-46723-8_45"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b8b2ba2e38a77088ed927869b288fdfa3697adf6492ffd77d78990cfdf917674"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084914058"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-46723-8_45", 
          "https://app.dimensions.ai/details/publication/pub.1084914058"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T20:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000279.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-46723-8_45"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_45'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_45'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_45'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_45'


     

    This table displays all metadata directly associated to this object as RDF triples.

    184 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-46723-8_45 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Ne8b2baf453764276bfa8c71e4416689c
    4 schema:citation sg:pub.10.1007/11866763_111
    5 sg:pub.10.1007/978-3-319-24571-3_7
    6 sg:pub.10.1007/978-3-319-46723-8_52
    7 sg:pub.10.1007/s11263-006-7934-5
    8 https://doi.org/10.1016/j.ejca.2008.10.028
    9 https://doi.org/10.1016/j.ijrobp.2009.09.023
    10 https://doi.org/10.1016/j.media.2012.11.001
    11 https://doi.org/10.1109/cvpr.2015.7298965
    12 https://doi.org/10.1109/cvpr.2016.392
    13 https://doi.org/10.1109/iccv.2015.164
    14 https://doi.org/10.1109/tmi.2011.2168234
    15 https://doi.org/10.1109/tpami.2004.1273918
    16 schema:datePublished 2016
    17 schema:datePublishedReg 2016-01-01
    18 schema:description Lymph node segmentation is an important yet challenging problem in medical image analysis. The presence of enlarged lymph nodes (LNs) signals the onset or progression of a malignant disease or infection. In the thoracoabdominal (TA) body region, neighboring enlarged LNs often spatially collapse into “swollen” lymph node clusters (LNCs) (up to 9 LNs in our dataset). Accurate segmentation of TA LNCs is complexified by the noticeably poor intensity and texture contrast among neighboring LNs and surrounding tissues, and has not been addressed in previous work. This paper presents a novel approach to TA LNC segmentation that combines holistically-nested neural networks (HNNs) and structured optimization (SO). Two HNNs, built upon recent fully convolutional networks (FCNs) and deeply supervised networks (DSNs), are trained to learn the LNC appearance (HNN-A) or contour (HNN-C) probabilistic output maps, respectively. HNN first produces the class label maps with the same resolution as the input image, like FCN. Afterwards, HNN predictions for LNC appearance and contour cues are formulated into the unary and pairwise terms of conditional random fields (CRFs), which are subsequently solved using one of three different SO methods: dense CRF, graph cuts, and boundary neural fields (BNF). BNF yields the highest quantitative results. Its mean Dice coefficient between segmented and ground truth LN volumes is 82.1 % ± 9.6 %, compared to 73.0 % ± 17.6 % for HNN-A alone. The LNC relative volume (\(cm^3\)) difference is 13.7 % ± 13.1 %, a promising result for the development of LN imaging biomarkers based on volumetric measurements.
    19 schema:editor Nc4084a6e6d6b4d1ab2576f4a5447a01d
    20 schema:genre chapter
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf Na73519b40f804d97a8042082cd0ba53d
    24 schema:name Automatic Lymph Node Cluster Segmentation Using Holistically-Nested Neural Networks and Structured Optimization in CT Images
    25 schema:pagination 388-397
    26 schema:productId N1705b8053e08444593d96b04a48af581
    27 N924d9adc26ac4c909b42b73ec7da2ae3
    28 Nc9795075d28c425db46fa70cd7013c47
    29 schema:publisher N3c70404e4487499db82684acdb8034eb
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084914058
    31 https://doi.org/10.1007/978-3-319-46723-8_45
    32 schema:sdDatePublished 2019-04-15T20:09
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher Nd3b54dfe941e4f06ab0d34be3be24517
    35 schema:url http://link.springer.com/10.1007/978-3-319-46723-8_45
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset chapters
    38 rdf:type schema:Chapter
    39 N0e9ddfd920b64797b7902c6403409605 rdf:first sg:person.010640125611.08
    40 rdf:rest N161507f13eb6423ea36d5ea2c36db71d
    41 N12014a5a9f6e443c996f810b76b129eb schema:familyName Ourselin
    42 schema:givenName Sebastien
    43 rdf:type schema:Person
    44 N1256b97f53f24c37afc6045336c3cade rdf:first sg:person.01331447262.96
    45 rdf:rest N0e9ddfd920b64797b7902c6403409605
    46 N161507f13eb6423ea36d5ea2c36db71d rdf:first sg:person.012003722630.64
    47 rdf:rest N760437db3a1c4757a402c4c5f1e6e911
    48 N169f33e78eaa4ef1a3d8aca5536fb584 rdf:first Nd3646c592ecd4fed9849fad6efd398e7
    49 rdf:rest Nacbebf4051d8416aa6357a839af0337c
    50 N1705b8053e08444593d96b04a48af581 schema:name doi
    51 schema:value 10.1007/978-3-319-46723-8_45
    52 rdf:type schema:PropertyValue
    53 N3c184bf79bb244fcbaeaea79ea5bd46b rdf:first N8b871a2d342f4306b6543558e171215b
    54 rdf:rest rdf:nil
    55 N3c70404e4487499db82684acdb8034eb schema:location Cham
    56 schema:name Springer International Publishing
    57 rdf:type schema:Organisation
    58 N49611287f7c649dd99a6204741e992e4 schema:familyName Joskowicz
    59 schema:givenName Leo
    60 rdf:type schema:Person
    61 N5036c89b20734d47b91ca394eecbc0ee rdf:first N49611287f7c649dd99a6204741e992e4
    62 rdf:rest N169f33e78eaa4ef1a3d8aca5536fb584
    63 N760437db3a1c4757a402c4c5f1e6e911 rdf:first sg:person.01046552004.34
    64 rdf:rest Nb2973c9be92d4ed8b4b973f419e07e95
    65 N8b871a2d342f4306b6543558e171215b schema:familyName Wells
    66 schema:givenName William
    67 rdf:type schema:Person
    68 N924d9adc26ac4c909b42b73ec7da2ae3 schema:name dimensions_id
    69 schema:value pub.1084914058
    70 rdf:type schema:PropertyValue
    71 Na73519b40f804d97a8042082cd0ba53d schema:isbn 978-3-319-46722-1
    72 978-3-319-46723-8
    73 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016
    74 rdf:type schema:Book
    75 Na8cf49dcefdf42ada19b9602282a3860 schema:familyName Unal
    76 schema:givenName Gozde
    77 rdf:type schema:Person
    78 Nacbebf4051d8416aa6357a839af0337c rdf:first Na8cf49dcefdf42ada19b9602282a3860
    79 rdf:rest N3c184bf79bb244fcbaeaea79ea5bd46b
    80 Nb2973c9be92d4ed8b4b973f419e07e95 rdf:first sg:person.015152613731.35
    81 rdf:rest Nb413e157bc7e4b069768a70eb671d768
    82 Nb413e157bc7e4b069768a70eb671d768 rdf:first sg:person.011331054577.30
    83 rdf:rest rdf:nil
    84 Nc2a1e66ff69f4b9ab131adf48d417549 rdf:first sg:person.012233025131.02
    85 rdf:rest N1256b97f53f24c37afc6045336c3cade
    86 Nc4084a6e6d6b4d1ab2576f4a5447a01d rdf:first N12014a5a9f6e443c996f810b76b129eb
    87 rdf:rest N5036c89b20734d47b91ca394eecbc0ee
    88 Nc9795075d28c425db46fa70cd7013c47 schema:name readcube_id
    89 schema:value b8b2ba2e38a77088ed927869b288fdfa3697adf6492ffd77d78990cfdf917674
    90 rdf:type schema:PropertyValue
    91 Nd3646c592ecd4fed9849fad6efd398e7 schema:familyName Sabuncu
    92 schema:givenName Mert R.
    93 rdf:type schema:Person
    94 Nd3b54dfe941e4f06ab0d34be3be24517 schema:name Springer Nature - SN SciGraph project
    95 rdf:type schema:Organization
    96 Ne8b2baf453764276bfa8c71e4416689c rdf:first sg:person.07400503505.29
    97 rdf:rest Nf015376ab19743db9810ccc164054c00
    98 Nf015376ab19743db9810ccc164054c00 rdf:first sg:person.01353423536.73
    99 rdf:rest Nc2a1e66ff69f4b9ab131adf48d417549
    100 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Information and Computing Sciences
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Artificial Intelligence and Image Processing
    105 rdf:type schema:DefinedTerm
    106 sg:person.01046552004.34 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
    107 schema:familyName Shi
    108 schema:givenName Jianbo
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046552004.34
    110 rdf:type schema:Person
    111 sg:person.010640125611.08 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
    112 schema:familyName Bertasius
    113 schema:givenName Gedas
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010640125611.08
    115 rdf:type schema:Person
    116 sg:person.011331054577.30 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    117 schema:familyName Summers
    118 schema:givenName Ronald M.
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30
    120 rdf:type schema:Person
    121 sg:person.012003722630.64 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    122 schema:familyName Lay
    123 schema:givenName Nathan
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012003722630.64
    125 rdf:type schema:Person
    126 sg:person.012233025131.02 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    127 schema:familyName Wang
    128 schema:givenName Xiaosong
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012233025131.02
    130 rdf:type schema:Person
    131 sg:person.01331447262.96 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    132 schema:familyName Roth
    133 schema:givenName Holger
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331447262.96
    135 rdf:type schema:Person
    136 sg:person.01353423536.73 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    137 schema:familyName Lu
    138 schema:givenName Le
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73
    140 rdf:type schema:Person
    141 sg:person.015152613731.35 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    142 schema:familyName Tsehay
    143 schema:givenName Yohannes
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015152613731.35
    145 rdf:type schema:Person
    146 sg:person.07400503505.29 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    147 schema:familyName Nogues
    148 schema:givenName Isabella
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07400503505.29
    150 rdf:type schema:Person
    151 sg:pub.10.1007/11866763_111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036983855
    152 https://doi.org/10.1007/11866763_111
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/978-3-319-24571-3_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050944423
    155 https://doi.org/10.1007/978-3-319-24571-3_7
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/978-3-319-46723-8_52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084904832
    158 https://doi.org/10.1007/978-3-319-46723-8_52
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s11263-006-7934-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026896150
    161 https://doi.org/10.1007/s11263-006-7934-5
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/j.ejca.2008.10.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003325493
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/j.ijrobp.2009.09.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009988680
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/j.media.2012.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011379533
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1109/cvpr.2015.7298965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093626237
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1109/cvpr.2016.392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093532199
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1109/iccv.2015.164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094045097
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1109/tmi.2011.2168234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695796
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1109/tpami.2004.1273918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050308038
    178 rdf:type schema:CreativeWork
    179 https://www.grid.ac/institutes/grid.25879.31 schema:alternateName University of Pennsylvania
    180 schema:name University of Pennsylvania
    181 rdf:type schema:Organization
    182 https://www.grid.ac/institutes/grid.410305.3 schema:alternateName National Institutes of Health Clinical Center
    183 schema:name National Institutes of Health Clinical Center
    184 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...