Automatic Lymph Node Cluster Segmentation Using Holistically-Nested Neural Networks and Structured Optimization in CT Images View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Isabella Nogues , Le Lu , Xiaosong Wang , Holger Roth , Gedas Bertasius , Nathan Lay , Jianbo Shi , Yohannes Tsehay , Ronald M. Summers

ABSTRACT

Lymph node segmentation is an important yet challenging problem in medical image analysis. The presence of enlarged lymph nodes (LNs) signals the onset or progression of a malignant disease or infection. In the thoracoabdominal (TA) body region, neighboring enlarged LNs often spatially collapse into “swollen” lymph node clusters (LNCs) (up to 9 LNs in our dataset). Accurate segmentation of TA LNCs is complexified by the noticeably poor intensity and texture contrast among neighboring LNs and surrounding tissues, and has not been addressed in previous work. This paper presents a novel approach to TA LNC segmentation that combines holistically-nested neural networks (HNNs) and structured optimization (SO). Two HNNs, built upon recent fully convolutional networks (FCNs) and deeply supervised networks (DSNs), are trained to learn the LNC appearance (HNN-A) or contour (HNN-C) probabilistic output maps, respectively. HNN first produces the class label maps with the same resolution as the input image, like FCN. Afterwards, HNN predictions for LNC appearance and contour cues are formulated into the unary and pairwise terms of conditional random fields (CRFs), which are subsequently solved using one of three different SO methods: dense CRF, graph cuts, and boundary neural fields (BNF). BNF yields the highest quantitative results. Its mean Dice coefficient between segmented and ground truth LN volumes is 82.1 % ± 9.6 %, compared to 73.0 % ± 17.6 % for HNN-A alone. The LNC relative volume (\(cm^3\)) difference is 13.7 % ± 13.1 %, a promising result for the development of LN imaging biomarkers based on volumetric measurements. More... »

PAGES

388-397

References to SciGraph publications

  • 2015. Leveraging Mid-Level Semantic Boundary Cues for Automated Lymph Node Detection in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION -- MICCAI 2015
  • 2006-11. Graph Cuts and Efficient N-D Image Segmentation in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2006. Segmentation of Neck Lymph Nodes in CT Datasets with Stable 3D Mass-Spring Models in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2006
  • 2016. Spatial Aggregation of Holistically-Nested Networks for Automated Pancreas Segmentation in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2016
  • Book

    TITLE

    Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016

    ISBN

    978-3-319-46722-1
    978-3-319-46723-8

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_45

    DOI

    http://dx.doi.org/10.1007/978-3-319-46723-8_45

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084914058


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "National Institutes of Health Clinical Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nogues", 
            "givenName": "Isabella", 
            "id": "sg:person.07400503505.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07400503505.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "National Institutes of Health Clinical Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Le", 
            "id": "sg:person.01353423536.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "National Institutes of Health Clinical Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Xiaosong", 
            "id": "sg:person.012233025131.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012233025131.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "National Institutes of Health Clinical Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Roth", 
            "givenName": "Holger", 
            "id": "sg:person.01331447262.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331447262.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Pennsylvania", 
              "id": "https://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "University of Pennsylvania"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bertasius", 
            "givenName": "Gedas", 
            "id": "sg:person.010640125611.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010640125611.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "National Institutes of Health Clinical Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lay", 
            "givenName": "Nathan", 
            "id": "sg:person.012003722630.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012003722630.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Pennsylvania", 
              "id": "https://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "University of Pennsylvania"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "Jianbo", 
            "id": "sg:person.01046552004.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046552004.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "National Institutes of Health Clinical Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tsehay", 
            "givenName": "Yohannes", 
            "id": "sg:person.015152613731.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015152613731.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "National Institutes of Health Clinical Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Summers", 
            "givenName": "Ronald M.", 
            "id": "sg:person.011331054577.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.ejca.2008.10.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003325493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijrobp.2009.09.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009988680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2012.11.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011379533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2012.11.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011379533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-006-7934-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026896150", 
              "https://doi.org/10.1007/s11263-006-7934-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11866763_111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036983855", 
              "https://doi.org/10.1007/11866763_111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11866763_111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036983855", 
              "https://doi.org/10.1007/11866763_111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2004.1273918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050308038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-24571-3_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050944423", 
              "https://doi.org/10.1007/978-3-319-24571-3_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2011.2168234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061695796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46723-8_52", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084904832", 
              "https://doi.org/10.1007/978-3-319-46723-8_52"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2016.392", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093532199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2015.7298965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093626237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2015.164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094045097"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016", 
        "datePublishedReg": "2016-01-01", 
        "description": "Lymph node segmentation is an important yet challenging problem in medical image analysis. The presence of enlarged lymph nodes (LNs) signals the onset or progression of a malignant disease or infection. In the thoracoabdominal (TA) body region, neighboring enlarged LNs often spatially collapse into \u201cswollen\u201d lymph node clusters (LNCs) (up to 9 LNs in our dataset). Accurate segmentation of TA LNCs is complexified by the noticeably poor intensity and texture contrast among neighboring LNs and surrounding tissues, and has not been addressed in previous work. This paper presents a novel approach to TA LNC segmentation that combines holistically-nested neural networks (HNNs) and structured optimization (SO). Two HNNs, built upon recent fully convolutional networks (FCNs) and deeply supervised networks (DSNs), are trained to learn the LNC appearance (HNN-A) or contour (HNN-C) probabilistic output maps, respectively. HNN first produces the class label maps with the same resolution as the input image, like FCN. Afterwards, HNN predictions for LNC appearance and contour cues are formulated into the unary and pairwise terms of conditional random fields (CRFs), which are subsequently solved using one of three different SO methods: dense CRF, graph cuts, and boundary neural fields (BNF). BNF yields the highest quantitative results. Its mean Dice coefficient between segmented and ground truth LN volumes is 82.1 % \u00b1 9.6 %, compared to 73.0 % \u00b1 17.6 % for HNN-A alone. The LNC relative volume (\\(cm^3\\)) difference is 13.7 % \u00b1 13.1 %, a promising result for the development of LN imaging biomarkers based on volumetric measurements.", 
        "editor": [
          {
            "familyName": "Ourselin", 
            "givenName": "Sebastien", 
            "type": "Person"
          }, 
          {
            "familyName": "Joskowicz", 
            "givenName": "Leo", 
            "type": "Person"
          }, 
          {
            "familyName": "Sabuncu", 
            "givenName": "Mert R.", 
            "type": "Person"
          }, 
          {
            "familyName": "Unal", 
            "givenName": "Gozde", 
            "type": "Person"
          }, 
          {
            "familyName": "Wells", 
            "givenName": "William", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-46723-8_45", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-46722-1", 
            "978-3-319-46723-8"
          ], 
          "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2016", 
          "type": "Book"
        }, 
        "name": "Automatic Lymph Node Cluster Segmentation Using Holistically-Nested Neural Networks and\u00a0Structured Optimization in CT Images", 
        "pagination": "388-397", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-46723-8_45"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b8b2ba2e38a77088ed927869b288fdfa3697adf6492ffd77d78990cfdf917674"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084914058"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-46723-8_45", 
          "https://app.dimensions.ai/details/publication/pub.1084914058"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T20:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000279.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-46723-8_45"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_45'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_45'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_45'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46723-8_45'


     

    This table displays all metadata directly associated to this object as RDF triples.

    184 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-46723-8_45 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Ne801e5243d2c4d24aa9f60416276ef96
    4 schema:citation sg:pub.10.1007/11866763_111
    5 sg:pub.10.1007/978-3-319-24571-3_7
    6 sg:pub.10.1007/978-3-319-46723-8_52
    7 sg:pub.10.1007/s11263-006-7934-5
    8 https://doi.org/10.1016/j.ejca.2008.10.028
    9 https://doi.org/10.1016/j.ijrobp.2009.09.023
    10 https://doi.org/10.1016/j.media.2012.11.001
    11 https://doi.org/10.1109/cvpr.2015.7298965
    12 https://doi.org/10.1109/cvpr.2016.392
    13 https://doi.org/10.1109/iccv.2015.164
    14 https://doi.org/10.1109/tmi.2011.2168234
    15 https://doi.org/10.1109/tpami.2004.1273918
    16 schema:datePublished 2016
    17 schema:datePublishedReg 2016-01-01
    18 schema:description Lymph node segmentation is an important yet challenging problem in medical image analysis. The presence of enlarged lymph nodes (LNs) signals the onset or progression of a malignant disease or infection. In the thoracoabdominal (TA) body region, neighboring enlarged LNs often spatially collapse into “swollen” lymph node clusters (LNCs) (up to 9 LNs in our dataset). Accurate segmentation of TA LNCs is complexified by the noticeably poor intensity and texture contrast among neighboring LNs and surrounding tissues, and has not been addressed in previous work. This paper presents a novel approach to TA LNC segmentation that combines holistically-nested neural networks (HNNs) and structured optimization (SO). Two HNNs, built upon recent fully convolutional networks (FCNs) and deeply supervised networks (DSNs), are trained to learn the LNC appearance (HNN-A) or contour (HNN-C) probabilistic output maps, respectively. HNN first produces the class label maps with the same resolution as the input image, like FCN. Afterwards, HNN predictions for LNC appearance and contour cues are formulated into the unary and pairwise terms of conditional random fields (CRFs), which are subsequently solved using one of three different SO methods: dense CRF, graph cuts, and boundary neural fields (BNF). BNF yields the highest quantitative results. Its mean Dice coefficient between segmented and ground truth LN volumes is 82.1 % ± 9.6 %, compared to 73.0 % ± 17.6 % for HNN-A alone. The LNC relative volume (\(cm^3\)) difference is 13.7 % ± 13.1 %, a promising result for the development of LN imaging biomarkers based on volumetric measurements.
    19 schema:editor N5e1e9ef6b45a45e3ab692d3a4b4bd3b1
    20 schema:genre chapter
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N99f72baa0fdf418196aff717138da1ce
    24 schema:name Automatic Lymph Node Cluster Segmentation Using Holistically-Nested Neural Networks and Structured Optimization in CT Images
    25 schema:pagination 388-397
    26 schema:productId N5ca7b28362ac4e79a18a4882f1ef75aa
    27 Na96764f31f7a406bb03ad2755adf61fe
    28 Ndc913e18db6c45a48ed49f6c475d32a7
    29 schema:publisher N160f4e18b4a949eaaa476611c196abd6
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084914058
    31 https://doi.org/10.1007/978-3-319-46723-8_45
    32 schema:sdDatePublished 2019-04-15T20:09
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher N089004ffb4e047ff97ca93a3dcaf0f1d
    35 schema:url http://link.springer.com/10.1007/978-3-319-46723-8_45
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset chapters
    38 rdf:type schema:Chapter
    39 N089004ffb4e047ff97ca93a3dcaf0f1d schema:name Springer Nature - SN SciGraph project
    40 rdf:type schema:Organization
    41 N10cf48c7e24e496a8a17a5dabd8ab2e8 rdf:first sg:person.012003722630.64
    42 rdf:rest N6e0af1593dd34fee9d29000d47f73459
    43 N14de07c97d5d4fae8be5b243598d5eaa rdf:first sg:person.01353423536.73
    44 rdf:rest Ne6c4f1925a634deda790930d0a884c42
    45 N160f4e18b4a949eaaa476611c196abd6 schema:location Cham
    46 schema:name Springer International Publishing
    47 rdf:type schema:Organisation
    48 N31c43193afb04f3f97b399fef23bacfc rdf:first sg:person.010640125611.08
    49 rdf:rest N10cf48c7e24e496a8a17a5dabd8ab2e8
    50 N3394268f2175401cabd408a45285b6b3 schema:familyName Joskowicz
    51 schema:givenName Leo
    52 rdf:type schema:Person
    53 N3e2131d6fc29460e945b6a8217d14324 schema:familyName Ourselin
    54 schema:givenName Sebastien
    55 rdf:type schema:Person
    56 N4d787c03e6634ab884e87786aa68834e rdf:first Nec888adcf13d4d74a5d4e0772f093cca
    57 rdf:rest N8b1e0e9554fd4778b4f8c4b350290f36
    58 N58915ca2632a436489032792a0f67eaa rdf:first N3394268f2175401cabd408a45285b6b3
    59 rdf:rest N4d787c03e6634ab884e87786aa68834e
    60 N5ca7b28362ac4e79a18a4882f1ef75aa schema:name doi
    61 schema:value 10.1007/978-3-319-46723-8_45
    62 rdf:type schema:PropertyValue
    63 N5e1e9ef6b45a45e3ab692d3a4b4bd3b1 rdf:first N3e2131d6fc29460e945b6a8217d14324
    64 rdf:rest N58915ca2632a436489032792a0f67eaa
    65 N620d22540d004152a6ee8bec7b4bd792 rdf:first sg:person.01331447262.96
    66 rdf:rest N31c43193afb04f3f97b399fef23bacfc
    67 N6e0af1593dd34fee9d29000d47f73459 rdf:first sg:person.01046552004.34
    68 rdf:rest Na0fb93300304414686d3bb1cf6e2f653
    69 N8b1e0e9554fd4778b4f8c4b350290f36 rdf:first Nf681a16d02f04801bf0cf59407225314
    70 rdf:rest Nb88cae5671a7491f9e626199252e48a6
    71 N99f72baa0fdf418196aff717138da1ce schema:isbn 978-3-319-46722-1
    72 978-3-319-46723-8
    73 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016
    74 rdf:type schema:Book
    75 Na0fb93300304414686d3bb1cf6e2f653 rdf:first sg:person.015152613731.35
    76 rdf:rest Na474afabd27e4956b274f8052197f7d5
    77 Na474afabd27e4956b274f8052197f7d5 rdf:first sg:person.011331054577.30
    78 rdf:rest rdf:nil
    79 Na96764f31f7a406bb03ad2755adf61fe schema:name readcube_id
    80 schema:value b8b2ba2e38a77088ed927869b288fdfa3697adf6492ffd77d78990cfdf917674
    81 rdf:type schema:PropertyValue
    82 Nb88cae5671a7491f9e626199252e48a6 rdf:first Nf1192a719a7c40b78491a4c23d50d1b3
    83 rdf:rest rdf:nil
    84 Ndc913e18db6c45a48ed49f6c475d32a7 schema:name dimensions_id
    85 schema:value pub.1084914058
    86 rdf:type schema:PropertyValue
    87 Ne6c4f1925a634deda790930d0a884c42 rdf:first sg:person.012233025131.02
    88 rdf:rest N620d22540d004152a6ee8bec7b4bd792
    89 Ne801e5243d2c4d24aa9f60416276ef96 rdf:first sg:person.07400503505.29
    90 rdf:rest N14de07c97d5d4fae8be5b243598d5eaa
    91 Nec888adcf13d4d74a5d4e0772f093cca schema:familyName Sabuncu
    92 schema:givenName Mert R.
    93 rdf:type schema:Person
    94 Nf1192a719a7c40b78491a4c23d50d1b3 schema:familyName Wells
    95 schema:givenName William
    96 rdf:type schema:Person
    97 Nf681a16d02f04801bf0cf59407225314 schema:familyName Unal
    98 schema:givenName Gozde
    99 rdf:type schema:Person
    100 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Information and Computing Sciences
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Artificial Intelligence and Image Processing
    105 rdf:type schema:DefinedTerm
    106 sg:person.01046552004.34 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
    107 schema:familyName Shi
    108 schema:givenName Jianbo
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046552004.34
    110 rdf:type schema:Person
    111 sg:person.010640125611.08 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
    112 schema:familyName Bertasius
    113 schema:givenName Gedas
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010640125611.08
    115 rdf:type schema:Person
    116 sg:person.011331054577.30 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    117 schema:familyName Summers
    118 schema:givenName Ronald M.
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30
    120 rdf:type schema:Person
    121 sg:person.012003722630.64 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    122 schema:familyName Lay
    123 schema:givenName Nathan
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012003722630.64
    125 rdf:type schema:Person
    126 sg:person.012233025131.02 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    127 schema:familyName Wang
    128 schema:givenName Xiaosong
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012233025131.02
    130 rdf:type schema:Person
    131 sg:person.01331447262.96 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    132 schema:familyName Roth
    133 schema:givenName Holger
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331447262.96
    135 rdf:type schema:Person
    136 sg:person.01353423536.73 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    137 schema:familyName Lu
    138 schema:givenName Le
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73
    140 rdf:type schema:Person
    141 sg:person.015152613731.35 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    142 schema:familyName Tsehay
    143 schema:givenName Yohannes
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015152613731.35
    145 rdf:type schema:Person
    146 sg:person.07400503505.29 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    147 schema:familyName Nogues
    148 schema:givenName Isabella
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07400503505.29
    150 rdf:type schema:Person
    151 sg:pub.10.1007/11866763_111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036983855
    152 https://doi.org/10.1007/11866763_111
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/978-3-319-24571-3_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050944423
    155 https://doi.org/10.1007/978-3-319-24571-3_7
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/978-3-319-46723-8_52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084904832
    158 https://doi.org/10.1007/978-3-319-46723-8_52
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s11263-006-7934-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026896150
    161 https://doi.org/10.1007/s11263-006-7934-5
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/j.ejca.2008.10.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003325493
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/j.ijrobp.2009.09.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009988680
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/j.media.2012.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011379533
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1109/cvpr.2015.7298965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093626237
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1109/cvpr.2016.392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093532199
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1109/iccv.2015.164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094045097
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1109/tmi.2011.2168234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695796
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1109/tpami.2004.1273918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050308038
    178 rdf:type schema:CreativeWork
    179 https://www.grid.ac/institutes/grid.25879.31 schema:alternateName University of Pennsylvania
    180 schema:name University of Pennsylvania
    181 rdf:type schema:Organization
    182 https://www.grid.ac/institutes/grid.410305.3 schema:alternateName National Institutes of Health Clinical Center
    183 schema:name National Institutes of Health Clinical Center
    184 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...