Real-Time Large-Scale Dense 3D Reconstruction with Loop Closure View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Olaf Kähler , Victor A. Prisacariu , David W. Murray

ABSTRACT

In the highly active research field of dense 3D reconstruction and modelling, loop closure is still a largely unsolved problem. While a number of previous works show how to accumulate keyframes, globally optimize their pose on closure, and compute a dense 3D model as a post-processing step, in this paper we propose an online framework which delivers a consistent 3D model to the user in real time. This is achieved by splitting the scene into submaps, and adjusting the poses of the submaps as and when required. We present a novel technique for accumulating relative pose constraints between the submaps at very little computational cost, and demonstrate how to maintain a lightweight, scalable global optimization of submap poses. In contrast to previous works, the number of submaps grows with the observed 3D scene surface, rather than with time. In addition to loop closure, the paper incorporates relocalization and provides a novel way of assessing tracking quality. More... »

PAGES

500-516

References to SciGraph publications

  • 2004-09. Visual Modeling with a Hand-Held Camera in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2014. LSD-SLAM: Large-Scale Direct Monocular SLAM in COMPUTER VISION – ECCV 2014
  • Book

    TITLE

    Computer Vision – ECCV 2016

    ISBN

    978-3-319-46483-1
    978-3-319-46484-8

    Author Affiliations

    From Grant

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-46484-8_30

    DOI

    http://dx.doi.org/10.1007/978-3-319-46484-8_30

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037797721


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Oxford", 
              "id": "https://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Department of Engineering Science, University of Oxford"
              ], 
              "type": "Organization"
            }, 
            "familyName": "K\u00e4hler", 
            "givenName": "Olaf", 
            "id": "sg:person.013235710041.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013235710041.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Oxford", 
              "id": "https://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Department of Engineering Science, University of Oxford"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Prisacariu", 
            "givenName": "Victor A.", 
            "id": "sg:person.011045366441.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011045366441.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Oxford", 
              "id": "https://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Department of Engineering Science, University of Oxford"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Murray", 
            "givenName": "David W.", 
            "id": "sg:person.012633757262.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012633757262.69"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-319-10605-2_54", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003628531", 
              "https://doi.org/10.1007/978-3-319-10605-2_54"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/237170.237269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005380297"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gmod.2012.09.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011029082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2461912.2461940", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019209744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2508363.2508374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024514168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cviu.2010.11.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027848277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:visi.0000025798.50602.3a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036329061", 
              "https://doi.org/10.1023/b:visi.0000025798.50602.3a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0278364914551008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047860774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0278364914551008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047860774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jvcir.2013.02.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052164647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2007.1049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2011.153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061744047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tro.2005.844673", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061784514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tro.2013.2279412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061785553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2015.2459891", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061814493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ismar.2011.6092378", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093215863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ismar.2013.6671777", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093239962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ismar.2013.6671767", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093452639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icra.2011.5979949", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093586150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icra.2014.6907054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093766017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2011.6126513", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093796829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2015.7299077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093932794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2010.5539794", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094039259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icra.2014.6907127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094064291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iros.2008.4650996", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094132352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iros.2013.6696881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094314518"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icra.2013.6631400", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094370607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ismar.2007.4538852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094578863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iros.2013.6696650", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094585069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2015.7299195", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094807216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/3dv.2015.40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095323433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2006.19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095709070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1.9780898718881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098557452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.15607/rss.2013.ix.035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099108139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.15607/rss.2015.xi.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099108160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.15607/rss.2015.xi.040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099108198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5244/c.22.6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099325592"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016", 
        "datePublishedReg": "2016-01-01", 
        "description": "In the highly active research field of dense 3D reconstruction and modelling, loop closure is still a largely unsolved problem. While a number of previous works show how to accumulate keyframes, globally optimize their pose on closure, and compute a dense 3D model as a post-processing step, in this paper we propose an online framework which delivers a consistent 3D model to the user in real time. This is achieved by splitting the scene into submaps, and adjusting the poses of the submaps as and when required. We present a novel technique for accumulating relative pose constraints between the submaps at very little computational cost, and demonstrate how to maintain a lightweight, scalable global optimization of submap poses. In contrast to previous works, the number of submaps grows with the observed 3D scene surface, rather than with time. In addition to loop closure, the paper incorporates relocalization and provides a novel way of assessing tracking quality.", 
        "editor": [
          {
            "familyName": "Leibe", 
            "givenName": "Bastian", 
            "type": "Person"
          }, 
          {
            "familyName": "Matas", 
            "givenName": "Jiri", 
            "type": "Person"
          }, 
          {
            "familyName": "Sebe", 
            "givenName": "Nicu", 
            "type": "Person"
          }, 
          {
            "familyName": "Welling", 
            "givenName": "Max", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-46484-8_30", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2764342", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": {
          "isbn": [
            "978-3-319-46483-1", 
            "978-3-319-46484-8"
          ], 
          "name": "Computer Vision \u2013 ECCV 2016", 
          "type": "Book"
        }, 
        "name": "Real-Time Large-Scale Dense 3D Reconstruction with Loop Closure", 
        "pagination": "500-516", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-46484-8_30"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b40ec8c0923fadc7afbcff61d773acb8aaba0c70bd8e26a95a615c1806a7bcaf"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037797721"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-46484-8_30", 
          "https://app.dimensions.ai/details/publication/pub.1037797721"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T22:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000266.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-46484-8_30"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46484-8_30'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46484-8_30'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46484-8_30'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46484-8_30'


     

    This table displays all metadata directly associated to this object as RDF triples.

    206 TRIPLES      23 PREDICATES      63 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-46484-8_30 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N18a9758127294863b2108db352a7a997
    4 schema:citation sg:pub.10.1007/978-3-319-10605-2_54
    5 sg:pub.10.1023/b:visi.0000025798.50602.3a
    6 https://doi.org/10.1016/j.cviu.2010.11.023
    7 https://doi.org/10.1016/j.gmod.2012.09.002
    8 https://doi.org/10.1016/j.jvcir.2013.02.008
    9 https://doi.org/10.1109/3dv.2015.40
    10 https://doi.org/10.1109/cvpr.2006.19
    11 https://doi.org/10.1109/cvpr.2010.5539794
    12 https://doi.org/10.1109/cvpr.2015.7299077
    13 https://doi.org/10.1109/cvpr.2015.7299195
    14 https://doi.org/10.1109/iccv.2011.6126513
    15 https://doi.org/10.1109/icra.2011.5979949
    16 https://doi.org/10.1109/icra.2013.6631400
    17 https://doi.org/10.1109/icra.2014.6907054
    18 https://doi.org/10.1109/icra.2014.6907127
    19 https://doi.org/10.1109/iros.2008.4650996
    20 https://doi.org/10.1109/iros.2013.6696650
    21 https://doi.org/10.1109/iros.2013.6696881
    22 https://doi.org/10.1109/ismar.2007.4538852
    23 https://doi.org/10.1109/ismar.2011.6092378
    24 https://doi.org/10.1109/ismar.2013.6671767
    25 https://doi.org/10.1109/ismar.2013.6671777
    26 https://doi.org/10.1109/tpami.2007.1049
    27 https://doi.org/10.1109/tpami.2011.153
    28 https://doi.org/10.1109/tro.2005.844673
    29 https://doi.org/10.1109/tro.2013.2279412
    30 https://doi.org/10.1109/tvcg.2015.2459891
    31 https://doi.org/10.1137/1.9780898718881
    32 https://doi.org/10.1145/237170.237269
    33 https://doi.org/10.1145/2461912.2461940
    34 https://doi.org/10.1145/2508363.2508374
    35 https://doi.org/10.1177/0278364914551008
    36 https://doi.org/10.15607/rss.2013.ix.035
    37 https://doi.org/10.15607/rss.2015.xi.001
    38 https://doi.org/10.15607/rss.2015.xi.040
    39 https://doi.org/10.5244/c.22.6
    40 schema:datePublished 2016
    41 schema:datePublishedReg 2016-01-01
    42 schema:description In the highly active research field of dense 3D reconstruction and modelling, loop closure is still a largely unsolved problem. While a number of previous works show how to accumulate keyframes, globally optimize their pose on closure, and compute a dense 3D model as a post-processing step, in this paper we propose an online framework which delivers a consistent 3D model to the user in real time. This is achieved by splitting the scene into submaps, and adjusting the poses of the submaps as and when required. We present a novel technique for accumulating relative pose constraints between the submaps at very little computational cost, and demonstrate how to maintain a lightweight, scalable global optimization of submap poses. In contrast to previous works, the number of submaps grows with the observed 3D scene surface, rather than with time. In addition to loop closure, the paper incorporates relocalization and provides a novel way of assessing tracking quality.
    43 schema:editor N8923ca5f42f74a4c8ccaa3e3bf44d665
    44 schema:genre chapter
    45 schema:inLanguage en
    46 schema:isAccessibleForFree false
    47 schema:isPartOf N6112d892db2c43d1ad897180ffc95ed0
    48 schema:name Real-Time Large-Scale Dense 3D Reconstruction with Loop Closure
    49 schema:pagination 500-516
    50 schema:productId N1c09d09f854d40098148b41a3a96535b
    51 Na434fd3c68054daf9f6481fb76df402b
    52 Nc5854e0e53954ed1844ac0b7f50414cc
    53 schema:publisher Ne2b672264c844885be75eaecc35d507c
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037797721
    55 https://doi.org/10.1007/978-3-319-46484-8_30
    56 schema:sdDatePublished 2019-04-15T22:57
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher Nee46a02072c047d28b672ed282ec0135
    59 schema:url http://link.springer.com/10.1007/978-3-319-46484-8_30
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset chapters
    62 rdf:type schema:Chapter
    63 N18a9758127294863b2108db352a7a997 rdf:first sg:person.013235710041.63
    64 rdf:rest N955835d93cb647b8b7e8f834af10c082
    65 N1c09d09f854d40098148b41a3a96535b schema:name dimensions_id
    66 schema:value pub.1037797721
    67 rdf:type schema:PropertyValue
    68 N1e0a0044bac74d94837b4523e3c4ceeb rdf:first Nfdee9a5c93114f81b80bc17cdcfec86f
    69 rdf:rest N9b65aee5282340daab98e7a65e255318
    70 N38f5029babc94ac199ac9b6f1c335992 rdf:first N8e346048dcd74f8c8d0efcbb12939e4b
    71 rdf:rest N1e0a0044bac74d94837b4523e3c4ceeb
    72 N3c163c3f9ddc45ffb4154a9c9632b093 schema:familyName Leibe
    73 schema:givenName Bastian
    74 rdf:type schema:Person
    75 N5d5bed514f864ad1af9cd6669dfac436 schema:familyName Welling
    76 schema:givenName Max
    77 rdf:type schema:Person
    78 N6112d892db2c43d1ad897180ffc95ed0 schema:isbn 978-3-319-46483-1
    79 978-3-319-46484-8
    80 schema:name Computer Vision – ECCV 2016
    81 rdf:type schema:Book
    82 N8923ca5f42f74a4c8ccaa3e3bf44d665 rdf:first N3c163c3f9ddc45ffb4154a9c9632b093
    83 rdf:rest N38f5029babc94ac199ac9b6f1c335992
    84 N8e346048dcd74f8c8d0efcbb12939e4b schema:familyName Matas
    85 schema:givenName Jiri
    86 rdf:type schema:Person
    87 N955835d93cb647b8b7e8f834af10c082 rdf:first sg:person.011045366441.02
    88 rdf:rest Nb95d904688914e89980da65c73a34c15
    89 N9b65aee5282340daab98e7a65e255318 rdf:first N5d5bed514f864ad1af9cd6669dfac436
    90 rdf:rest rdf:nil
    91 Na434fd3c68054daf9f6481fb76df402b schema:name doi
    92 schema:value 10.1007/978-3-319-46484-8_30
    93 rdf:type schema:PropertyValue
    94 Nb95d904688914e89980da65c73a34c15 rdf:first sg:person.012633757262.69
    95 rdf:rest rdf:nil
    96 Nc5854e0e53954ed1844ac0b7f50414cc schema:name readcube_id
    97 schema:value b40ec8c0923fadc7afbcff61d773acb8aaba0c70bd8e26a95a615c1806a7bcaf
    98 rdf:type schema:PropertyValue
    99 Ne2b672264c844885be75eaecc35d507c schema:location Cham
    100 schema:name Springer International Publishing
    101 rdf:type schema:Organisation
    102 Nee46a02072c047d28b672ed282ec0135 schema:name Springer Nature - SN SciGraph project
    103 rdf:type schema:Organization
    104 Nfdee9a5c93114f81b80bc17cdcfec86f schema:familyName Sebe
    105 schema:givenName Nicu
    106 rdf:type schema:Person
    107 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Information and Computing Sciences
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Artificial Intelligence and Image Processing
    112 rdf:type schema:DefinedTerm
    113 sg:grant.2764342 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-46484-8_30
    114 rdf:type schema:MonetaryGrant
    115 sg:person.011045366441.02 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
    116 schema:familyName Prisacariu
    117 schema:givenName Victor A.
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011045366441.02
    119 rdf:type schema:Person
    120 sg:person.012633757262.69 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
    121 schema:familyName Murray
    122 schema:givenName David W.
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012633757262.69
    124 rdf:type schema:Person
    125 sg:person.013235710041.63 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
    126 schema:familyName Kähler
    127 schema:givenName Olaf
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013235710041.63
    129 rdf:type schema:Person
    130 sg:pub.10.1007/978-3-319-10605-2_54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003628531
    131 https://doi.org/10.1007/978-3-319-10605-2_54
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1023/b:visi.0000025798.50602.3a schema:sameAs https://app.dimensions.ai/details/publication/pub.1036329061
    134 https://doi.org/10.1023/b:visi.0000025798.50602.3a
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.cviu.2010.11.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027848277
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.gmod.2012.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011029082
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.jvcir.2013.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052164647
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1109/3dv.2015.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095323433
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1109/cvpr.2006.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095709070
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/cvpr.2010.5539794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094039259
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1109/cvpr.2015.7299077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093932794
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1109/cvpr.2015.7299195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094807216
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1109/iccv.2011.6126513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093796829
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1109/icra.2011.5979949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093586150
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1109/icra.2013.6631400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094370607
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1109/icra.2014.6907054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093766017
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1109/icra.2014.6907127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094064291
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1109/iros.2008.4650996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094132352
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1109/iros.2013.6696650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094585069
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1109/iros.2013.6696881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094314518
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1109/ismar.2007.4538852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094578863
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1109/ismar.2011.6092378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093215863
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1109/ismar.2013.6671767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093452639
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1109/ismar.2013.6671777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093239962
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1109/tpami.2007.1049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743181
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1109/tpami.2011.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744047
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1109/tro.2005.844673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061784514
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1109/tro.2013.2279412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061785553
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1109/tvcg.2015.2459891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061814493
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1137/1.9780898718881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098557452
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1145/237170.237269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005380297
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1145/2461912.2461940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019209744
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1145/2508363.2508374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024514168
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1177/0278364914551008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047860774
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.15607/rss.2013.ix.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099108139
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.15607/rss.2015.xi.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099108160
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.15607/rss.2015.xi.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099108198
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.5244/c.22.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099325592
    203 rdf:type schema:CreativeWork
    204 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
    205 schema:name Department of Engineering Science, University of Oxford
    206 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...