A Discrete Constraint-Based Method for Pipeline Build-Up Aware Services Sales Forecasting View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Peifeng Yin , Aly Megahed , Hamid Reza Motahari Nezhad , Taiga Nakamura

ABSTRACT

Services organizations maintain a pipeline of sales opportunities with different maturity level (belonging to progressive sales stages), lifespan (time to close) and contract values at any time point. As time goes, some opportunities close (contract signed, or lost) and new opportunities are added to the pipeline. Accurate forecasting of contract signing by the end of a time period (e.g., quarterly) is highly desirable to make appropriate sales activity management with respect to the projected revenue. While the problem of sales forecasting has been investigated in general, two specific aspects of sales engagement for services organizations, which entail additional complexity, have not been thoroughly investigated: (i) capturing the growth trend of current pipeline, and (ii) incorporating current pipeline build-up in updating the prediction model. We formulate these two issues as a dynamic curve-fitting problem in which we build a sales forecasting model by balancing the effect of current pipeline data and the model trained based on historical data. There are two challenges in doing so, (i) how to mathematically define such a balance and (ii) how to dynamically update the balance as more new data become available. To address these two issues, we propose a novel discrete-constraint method (DCM). It achieves the balance via fixing the value of certain model parameters and applying a leave-one-out algorithm to determine an optimal free parameter number. By conducting experiments on real business data, we demonstrate the superiority of DCM in sales pipeline forecasting. More... »

PAGES

813-828

References to SciGraph publications

  • 2015. Pricing IT Services Deals: A More Agile Top-Down Approach in SERVICE-ORIENTED COMPUTING
  • Book

    TITLE

    Service-Oriented Computing

    ISBN

    978-3-319-46294-3
    978-3-319-46295-0

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-46295-0_57

    DOI

    http://dx.doi.org/10.1007/978-3-319-46295-0_57

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1048145612


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Cloud Services Analytics Group, IBM Almaden Research Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yin", 
            "givenName": "Peifeng", 
            "id": "sg:person.013334364651.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013334364651.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Cloud Services Analytics Group, IBM Almaden Research Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Megahed", 
            "givenName": "Aly", 
            "id": "sg:person.07757303543.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07757303543.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Cloud Services Analytics Group, IBM Almaden Research Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nezhad", 
            "givenName": "Hamid Reza Motahari", 
            "id": "sg:person.013674731417.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013674731417.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Cloud Services Analytics Group, IBM Almaden Research Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nakamura", 
            "givenName": "Taiga", 
            "id": "sg:person.011627566457.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011627566457.23"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/meet.14504901215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008211515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4018/ijisscm.2013070105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013612178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-48616-0_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020019528", 
              "https://doi.org/10.1007/978-3-662-48616-0_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4018/ijoris.2016040101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026650576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2478/v10051-008-0013-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032232094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2478/v10051-008-0013-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032232094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rcim.2014.12.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038661923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/mnsc.6.3.324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064722475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7763/ijtef.2011.v2.95", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074040053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/scc.2016.99", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093378584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icnn.1995.487558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093549354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/srii.2014.16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094076267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/scc.2015.86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094448422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/scc.2015.76", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095412335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/scc.2014.29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095776743"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016", 
        "datePublishedReg": "2016-01-01", 
        "description": "Services organizations maintain a pipeline of sales opportunities with different maturity level (belonging to progressive sales stages), lifespan (time to close) and contract values at any time point. As time goes, some opportunities close (contract signed, or lost) and new opportunities are added to the pipeline. Accurate forecasting of contract signing by the end of a time period (e.g., quarterly) is highly desirable to make appropriate sales activity management with respect to the projected revenue. While the problem of sales forecasting has been investigated in general, two specific aspects of sales engagement for services organizations, which entail additional complexity, have not been thoroughly investigated: (i) capturing the growth trend of current pipeline, and (ii) incorporating current pipeline build-up in updating the prediction model. We formulate these two issues as a dynamic curve-fitting problem in which we build a sales forecasting model by balancing the effect of current pipeline data and the model trained based on historical data. There are two challenges in doing so, (i) how to mathematically define such a balance and (ii) how to dynamically update the balance as more new data become available. To address these two issues, we propose a novel discrete-constraint method (DCM). It achieves the balance via fixing the value of certain model parameters and applying a leave-one-out algorithm to determine an optimal free parameter number. By conducting experiments on real business data, we demonstrate the superiority of DCM in sales pipeline forecasting.", 
        "editor": [
          {
            "familyName": "Sheng", 
            "givenName": "Quan Z.", 
            "type": "Person"
          }, 
          {
            "familyName": "Stroulia", 
            "givenName": "Eleni", 
            "type": "Person"
          }, 
          {
            "familyName": "Tata", 
            "givenName": "Samir", 
            "type": "Person"
          }, 
          {
            "familyName": "Bhiri", 
            "givenName": "Sami", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-46295-0_57", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-46294-3", 
            "978-3-319-46295-0"
          ], 
          "name": "Service-Oriented Computing", 
          "type": "Book"
        }, 
        "name": "A Discrete Constraint-Based Method for Pipeline Build-Up Aware Services Sales Forecasting", 
        "pagination": "813-828", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-46295-0_57"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e55b749b19e4ba8ac9244364899ad840259e4149fea4f6d9b92682191cfda805"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1048145612"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-46295-0_57", 
          "https://app.dimensions.ai/details/publication/pub.1048145612"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T17:16", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000273.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-46295-0_57"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46295-0_57'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46295-0_57'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46295-0_57'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46295-0_57'


     

    This table displays all metadata directly associated to this object as RDF triples.

    149 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-46295-0_57 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author Nb9b94b12a2334fdaa4de0661202946a1
    4 schema:citation sg:pub.10.1007/978-3-662-48616-0_32
    5 https://doi.org/10.1002/meet.14504901215
    6 https://doi.org/10.1016/j.rcim.2014.12.015
    7 https://doi.org/10.1109/icnn.1995.487558
    8 https://doi.org/10.1109/scc.2014.29
    9 https://doi.org/10.1109/scc.2015.76
    10 https://doi.org/10.1109/scc.2015.86
    11 https://doi.org/10.1109/scc.2016.99
    12 https://doi.org/10.1109/srii.2014.16
    13 https://doi.org/10.1287/mnsc.6.3.324
    14 https://doi.org/10.2478/v10051-008-0013-7
    15 https://doi.org/10.4018/ijisscm.2013070105
    16 https://doi.org/10.4018/ijoris.2016040101
    17 https://doi.org/10.7763/ijtef.2011.v2.95
    18 schema:datePublished 2016
    19 schema:datePublishedReg 2016-01-01
    20 schema:description Services organizations maintain a pipeline of sales opportunities with different maturity level (belonging to progressive sales stages), lifespan (time to close) and contract values at any time point. As time goes, some opportunities close (contract signed, or lost) and new opportunities are added to the pipeline. Accurate forecasting of contract signing by the end of a time period (e.g., quarterly) is highly desirable to make appropriate sales activity management with respect to the projected revenue. While the problem of sales forecasting has been investigated in general, two specific aspects of sales engagement for services organizations, which entail additional complexity, have not been thoroughly investigated: (i) capturing the growth trend of current pipeline, and (ii) incorporating current pipeline build-up in updating the prediction model. We formulate these two issues as a dynamic curve-fitting problem in which we build a sales forecasting model by balancing the effect of current pipeline data and the model trained based on historical data. There are two challenges in doing so, (i) how to mathematically define such a balance and (ii) how to dynamically update the balance as more new data become available. To address these two issues, we propose a novel discrete-constraint method (DCM). It achieves the balance via fixing the value of certain model parameters and applying a leave-one-out algorithm to determine an optimal free parameter number. By conducting experiments on real business data, we demonstrate the superiority of DCM in sales pipeline forecasting.
    21 schema:editor N253e2c9264e14903b6eca51e829090ef
    22 schema:genre chapter
    23 schema:inLanguage en
    24 schema:isAccessibleForFree false
    25 schema:isPartOf N804eb78cbfb0492e975cd4aa8556b298
    26 schema:name A Discrete Constraint-Based Method for Pipeline Build-Up Aware Services Sales Forecasting
    27 schema:pagination 813-828
    28 schema:productId N407f3a576b2148f3bafa720eea9d1656
    29 Na9f23210cb6c4343a55267a70bd849d2
    30 Ne4261b3409cf4e178b7a51bdcf5ca28f
    31 schema:publisher N4ff92535f9fd4155a1bf1025c3f84f9c
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048145612
    33 https://doi.org/10.1007/978-3-319-46295-0_57
    34 schema:sdDatePublished 2019-04-15T17:16
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N31772ec22dec4ab58ba4127866b3419d
    37 schema:url http://link.springer.com/10.1007/978-3-319-46295-0_57
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset chapters
    40 rdf:type schema:Chapter
    41 N253e2c9264e14903b6eca51e829090ef rdf:first N89ba4826526c4f85815ddadfaccb510c
    42 rdf:rest N9d5638efc4e24f4eab98403b7fd1c471
    43 N31772ec22dec4ab58ba4127866b3419d schema:name Springer Nature - SN SciGraph project
    44 rdf:type schema:Organization
    45 N407f3a576b2148f3bafa720eea9d1656 schema:name dimensions_id
    46 schema:value pub.1048145612
    47 rdf:type schema:PropertyValue
    48 N42e5ce76adfc4a22998a1be8b2a5b5d7 rdf:first sg:person.07757303543.54
    49 rdf:rest N7af2afab72dd4a03ab3ff98869ee71d3
    50 N46fb227142a844a5b8af73a2bfefed84 schema:name Cloud Services Analytics Group, IBM Almaden Research Center
    51 rdf:type schema:Organization
    52 N4ff92535f9fd4155a1bf1025c3f84f9c schema:location Cham
    53 schema:name Springer International Publishing
    54 rdf:type schema:Organisation
    55 N737954fad6994e319f4630e4abbfb687 schema:name Cloud Services Analytics Group, IBM Almaden Research Center
    56 rdf:type schema:Organization
    57 N7af2afab72dd4a03ab3ff98869ee71d3 rdf:first sg:person.013674731417.00
    58 rdf:rest Nd2d6fc5c4c5e43bab9460ad30d336308
    59 N804eb78cbfb0492e975cd4aa8556b298 schema:isbn 978-3-319-46294-3
    60 978-3-319-46295-0
    61 schema:name Service-Oriented Computing
    62 rdf:type schema:Book
    63 N89ba4826526c4f85815ddadfaccb510c schema:familyName Sheng
    64 schema:givenName Quan Z.
    65 rdf:type schema:Person
    66 N9cf79050f3344e938692208787a84d5f rdf:first Nd36bda140b364bc8b7f9ae527ba99eaf
    67 rdf:rest Nabf9d5ce8a154ec2b8af046ce4069e1e
    68 N9d5638efc4e24f4eab98403b7fd1c471 rdf:first Nc18ea89fe9a4478380fd9925839dd551
    69 rdf:rest N9cf79050f3344e938692208787a84d5f
    70 Na9f23210cb6c4343a55267a70bd849d2 schema:name doi
    71 schema:value 10.1007/978-3-319-46295-0_57
    72 rdf:type schema:PropertyValue
    73 Nabf9d5ce8a154ec2b8af046ce4069e1e rdf:first Nfb9a1f50cc2045d1a79ed5bc882040e6
    74 rdf:rest rdf:nil
    75 Nb9b94b12a2334fdaa4de0661202946a1 rdf:first sg:person.013334364651.70
    76 rdf:rest N42e5ce76adfc4a22998a1be8b2a5b5d7
    77 Nc18ea89fe9a4478380fd9925839dd551 schema:familyName Stroulia
    78 schema:givenName Eleni
    79 rdf:type schema:Person
    80 Nc9fe01712b894488b7bea1e15b16fc02 schema:name Cloud Services Analytics Group, IBM Almaden Research Center
    81 rdf:type schema:Organization
    82 Nd2d6fc5c4c5e43bab9460ad30d336308 rdf:first sg:person.011627566457.23
    83 rdf:rest rdf:nil
    84 Nd36bda140b364bc8b7f9ae527ba99eaf schema:familyName Tata
    85 schema:givenName Samir
    86 rdf:type schema:Person
    87 Ne4261b3409cf4e178b7a51bdcf5ca28f schema:name readcube_id
    88 schema:value e55b749b19e4ba8ac9244364899ad840259e4149fea4f6d9b92682191cfda805
    89 rdf:type schema:PropertyValue
    90 Nf2e1138f6ad744e0bd266351f87b46d1 schema:name Cloud Services Analytics Group, IBM Almaden Research Center
    91 rdf:type schema:Organization
    92 Nfb9a1f50cc2045d1a79ed5bc882040e6 schema:familyName Bhiri
    93 schema:givenName Sami
    94 rdf:type schema:Person
    95 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Information and Computing Sciences
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Information Systems
    100 rdf:type schema:DefinedTerm
    101 sg:person.011627566457.23 schema:affiliation N46fb227142a844a5b8af73a2bfefed84
    102 schema:familyName Nakamura
    103 schema:givenName Taiga
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011627566457.23
    105 rdf:type schema:Person
    106 sg:person.013334364651.70 schema:affiliation Nf2e1138f6ad744e0bd266351f87b46d1
    107 schema:familyName Yin
    108 schema:givenName Peifeng
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013334364651.70
    110 rdf:type schema:Person
    111 sg:person.013674731417.00 schema:affiliation N737954fad6994e319f4630e4abbfb687
    112 schema:familyName Nezhad
    113 schema:givenName Hamid Reza Motahari
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013674731417.00
    115 rdf:type schema:Person
    116 sg:person.07757303543.54 schema:affiliation Nc9fe01712b894488b7bea1e15b16fc02
    117 schema:familyName Megahed
    118 schema:givenName Aly
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07757303543.54
    120 rdf:type schema:Person
    121 sg:pub.10.1007/978-3-662-48616-0_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020019528
    122 https://doi.org/10.1007/978-3-662-48616-0_32
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1002/meet.14504901215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008211515
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.rcim.2014.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038661923
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1109/icnn.1995.487558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093549354
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1109/scc.2014.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095776743
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1109/scc.2015.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095412335
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1109/scc.2015.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094448422
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1109/scc.2016.99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093378584
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1109/srii.2014.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094076267
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1287/mnsc.6.3.324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064722475
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.2478/v10051-008-0013-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032232094
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.4018/ijisscm.2013070105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013612178
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.4018/ijoris.2016040101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026650576
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.7763/ijtef.2011.v2.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074040053
    149 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...