QoS-Driven Management of Business Process Variants in Cloud Based Execution Environments View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-09-20

AUTHORS

Rahul Ghosh , Aditya Ghose , Aditya Hegde , Tridib Mukherjee , Adrian Mos

ABSTRACT

Economy of scale is a key driver behind the Cloud based adoption of a business process. Typically, the management of business process variants focuses on design variants, which permit (ideally small) variations in design (and hence, functionality) for achieving the same (functional) goal, under different functional constraints (such as the compliance obligations that have to be met in different jurisdictions). Little attention has been paid to: (a) variations in process design driven by non-functional considerations (e.g., performance, reliability and cost of operation) and (b) variations in process provisioning in Cloud. This paper seeks to develop means for identifying the correlation between both design and provisioning alternatives and the QoS of business processes deployed in the Cloud. Additionally, we explore the role of the context in determining the performance of a process. We use a set of data mining techniques (specifically decision tree learning, support vector machine and the k-nearest neighbour technique) to mine insights about these correlations. Proposed approaches are evaluated using a synthetic dataset as well as a real dataset. More... »

PAGES

55-69

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-46295-0_4

DOI

http://dx.doi.org/10.1007/978-3-319-46295-0_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002922575


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Commerce, Management, Tourism and Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Business and Management", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Xerox Research Center India, Bangalore, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Xerox Research Center India, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghosh", 
        "givenName": "Rahul", 
        "id": "sg:person.010035376267.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010035376267.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wollongong, 2522, Wollongong, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1007.6", 
          "name": [
            "University of Wollongong, 2522, Wollongong, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghose", 
        "givenName": "Aditya", 
        "id": "sg:person.015573517335.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015573517335.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xerox Research Center India, Bangalore, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Xerox Research Center India, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hegde", 
        "givenName": "Aditya", 
        "id": "sg:person.013403341367.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013403341367.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xerox Research Center India, Bangalore, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Xerox Research Center India, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mukherjee", 
        "givenName": "Tridib", 
        "id": "sg:person.014312315747.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014312315747.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xerox Research Center Europe, Grenoble, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Xerox Research Center Europe, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mos", 
        "givenName": "Adrian", 
        "id": "sg:person.012463443671.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012463443671.11"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-09-20", 
    "datePublishedReg": "2016-09-20", 
    "description": "Economy of scale is a key driver behind the Cloud based adoption of a business process. Typically, the management of business process variants focuses on design variants, which permit (ideally small) variations in design (and hence, functionality) for achieving the same (functional) goal, under different functional constraints (such as the compliance obligations that have to be met in different jurisdictions). Little attention has been paid to: (a) variations in process design driven by non-functional considerations (e.g., performance, reliability and cost of operation) and (b) variations in process provisioning in Cloud. This paper seeks to develop means for identifying the correlation between both design and provisioning alternatives and the QoS of business processes deployed in the Cloud. Additionally, we explore the role of the context in determining the performance of a process. We use a set of data mining techniques (specifically decision tree learning, support vector machine and the k-nearest neighbour technique) to mine insights about these correlations. Proposed approaches are evaluated using a synthetic dataset as well as a real dataset.", 
    "editor": [
      {
        "familyName": "Sheng", 
        "givenName": "Quan Z.", 
        "type": "Person"
      }, 
      {
        "familyName": "Stroulia", 
        "givenName": "Eleni", 
        "type": "Person"
      }, 
      {
        "familyName": "Tata", 
        "givenName": "Samir", 
        "type": "Person"
      }, 
      {
        "familyName": "Bhiri", 
        "givenName": "Sami", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-46295-0_4", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-46294-3", 
        "978-3-319-46295-0"
      ], 
      "name": "Service-Oriented Computing", 
      "type": "Book"
    }, 
    "keywords": [
      "business processes", 
      "business process variants", 
      "data mining techniques", 
      "non-functional considerations", 
      "execution environment", 
      "mining techniques", 
      "synthetic datasets", 
      "real datasets", 
      "process variants", 
      "cloud", 
      "dataset", 
      "design variants", 
      "same goal", 
      "QoS", 
      "process design", 
      "economies of scale", 
      "design", 
      "constraints", 
      "set", 
      "adoption", 
      "environment", 
      "management", 
      "process", 
      "performance", 
      "goal", 
      "technique", 
      "little attention", 
      "different functional constraints", 
      "context", 
      "functional constraints", 
      "key drivers", 
      "variants", 
      "drivers", 
      "attention", 
      "means", 
      "consideration", 
      "alternative", 
      "insights", 
      "economy", 
      "scale", 
      "correlation", 
      "variation", 
      "role", 
      "paper", 
      "approach"
    ], 
    "name": "QoS-Driven Management of Business Process Variants in Cloud Based Execution Environments", 
    "pagination": "55-69", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002922575"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-46295-0_4"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-46295-0_4", 
      "https://app.dimensions.ai/details/publication/pub.1002922575"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_36.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-46295-0_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46295-0_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46295-0_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46295-0_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-46295-0_4'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      22 PREDICATES      71 URIs      62 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-46295-0_4 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 anzsrc-for:15
4 anzsrc-for:1503
5 schema:author N7dd10155f1c14f32bbb468dbeeb404e2
6 schema:datePublished 2016-09-20
7 schema:datePublishedReg 2016-09-20
8 schema:description Economy of scale is a key driver behind the Cloud based adoption of a business process. Typically, the management of business process variants focuses on design variants, which permit (ideally small) variations in design (and hence, functionality) for achieving the same (functional) goal, under different functional constraints (such as the compliance obligations that have to be met in different jurisdictions). Little attention has been paid to: (a) variations in process design driven by non-functional considerations (e.g., performance, reliability and cost of operation) and (b) variations in process provisioning in Cloud. This paper seeks to develop means for identifying the correlation between both design and provisioning alternatives and the QoS of business processes deployed in the Cloud. Additionally, we explore the role of the context in determining the performance of a process. We use a set of data mining techniques (specifically decision tree learning, support vector machine and the k-nearest neighbour technique) to mine insights about these correlations. Proposed approaches are evaluated using a synthetic dataset as well as a real dataset.
9 schema:editor N829423f445d64cf9a8fda5cc1ff4ea8a
10 schema:genre chapter
11 schema:isAccessibleForFree false
12 schema:isPartOf Na02b239207984e5b87cb20eca8733e04
13 schema:keywords QoS
14 adoption
15 alternative
16 approach
17 attention
18 business process variants
19 business processes
20 cloud
21 consideration
22 constraints
23 context
24 correlation
25 data mining techniques
26 dataset
27 design
28 design variants
29 different functional constraints
30 drivers
31 economies of scale
32 economy
33 environment
34 execution environment
35 functional constraints
36 goal
37 insights
38 key drivers
39 little attention
40 management
41 means
42 mining techniques
43 non-functional considerations
44 paper
45 performance
46 process
47 process design
48 process variants
49 real datasets
50 role
51 same goal
52 scale
53 set
54 synthetic datasets
55 technique
56 variants
57 variation
58 schema:name QoS-Driven Management of Business Process Variants in Cloud Based Execution Environments
59 schema:pagination 55-69
60 schema:productId N090d9d3aa3fd44829a3d6efd46fc8810
61 N813552db41cc42749fa80ec015ce46bb
62 schema:publisher Nbf92d73534f64a59909e1213331fe1dd
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002922575
64 https://doi.org/10.1007/978-3-319-46295-0_4
65 schema:sdDatePublished 2022-12-01T06:52
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher Nfbf5dcbce2ee4157a77a847470cda7b1
68 schema:url https://doi.org/10.1007/978-3-319-46295-0_4
69 sgo:license sg:explorer/license/
70 sgo:sdDataset chapters
71 rdf:type schema:Chapter
72 N052f73d99ac84394bf8c083075b209e7 rdf:first sg:person.015573517335.70
73 rdf:rest N5a4eb6384ffb46dd9d49d7d40ed79819
74 N090d9d3aa3fd44829a3d6efd46fc8810 schema:name doi
75 schema:value 10.1007/978-3-319-46295-0_4
76 rdf:type schema:PropertyValue
77 N0b2e8dd2e04b404ebeabad73f46dd530 schema:familyName Bhiri
78 schema:givenName Sami
79 rdf:type schema:Person
80 N1f79762cd68c4ac2a5638380ea6f4a76 schema:familyName Stroulia
81 schema:givenName Eleni
82 rdf:type schema:Person
83 N3db7b7664bfa402db21aa9ade719616c rdf:first N0b2e8dd2e04b404ebeabad73f46dd530
84 rdf:rest rdf:nil
85 N5a4eb6384ffb46dd9d49d7d40ed79819 rdf:first sg:person.013403341367.43
86 rdf:rest N83e5559c5620446d9c8757c1a9d54f9d
87 N7dd10155f1c14f32bbb468dbeeb404e2 rdf:first sg:person.010035376267.35
88 rdf:rest N052f73d99ac84394bf8c083075b209e7
89 N813552db41cc42749fa80ec015ce46bb schema:name dimensions_id
90 schema:value pub.1002922575
91 rdf:type schema:PropertyValue
92 N82805753767d4384a75a917b2cbf80f6 rdf:first Nc7deb89092414e20a41a4307c59a1aae
93 rdf:rest N3db7b7664bfa402db21aa9ade719616c
94 N829423f445d64cf9a8fda5cc1ff4ea8a rdf:first N89d4b0bf54eb46e7b4280af7824c832e
95 rdf:rest Nba8fbf529c6c416ca96aaf93d55de212
96 N83e5559c5620446d9c8757c1a9d54f9d rdf:first sg:person.014312315747.35
97 rdf:rest Ne42fd8416a8045e591d3e0e906698247
98 N89d4b0bf54eb46e7b4280af7824c832e schema:familyName Sheng
99 schema:givenName Quan Z.
100 rdf:type schema:Person
101 Na02b239207984e5b87cb20eca8733e04 schema:isbn 978-3-319-46294-3
102 978-3-319-46295-0
103 schema:name Service-Oriented Computing
104 rdf:type schema:Book
105 Nba8fbf529c6c416ca96aaf93d55de212 rdf:first N1f79762cd68c4ac2a5638380ea6f4a76
106 rdf:rest N82805753767d4384a75a917b2cbf80f6
107 Nbf92d73534f64a59909e1213331fe1dd schema:name Springer Nature
108 rdf:type schema:Organisation
109 Nc7deb89092414e20a41a4307c59a1aae schema:familyName Tata
110 schema:givenName Samir
111 rdf:type schema:Person
112 Ne42fd8416a8045e591d3e0e906698247 rdf:first sg:person.012463443671.11
113 rdf:rest rdf:nil
114 Nfbf5dcbce2ee4157a77a847470cda7b1 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
117 schema:name Information and Computing Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
120 schema:name Information Systems
121 rdf:type schema:DefinedTerm
122 anzsrc-for:15 schema:inDefinedTermSet anzsrc-for:
123 schema:name Commerce, Management, Tourism and Services
124 rdf:type schema:DefinedTerm
125 anzsrc-for:1503 schema:inDefinedTermSet anzsrc-for:
126 schema:name Business and Management
127 rdf:type schema:DefinedTerm
128 sg:person.010035376267.35 schema:affiliation grid-institutes:None
129 schema:familyName Ghosh
130 schema:givenName Rahul
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010035376267.35
132 rdf:type schema:Person
133 sg:person.012463443671.11 schema:affiliation grid-institutes:None
134 schema:familyName Mos
135 schema:givenName Adrian
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012463443671.11
137 rdf:type schema:Person
138 sg:person.013403341367.43 schema:affiliation grid-institutes:None
139 schema:familyName Hegde
140 schema:givenName Aditya
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013403341367.43
142 rdf:type schema:Person
143 sg:person.014312315747.35 schema:affiliation grid-institutes:None
144 schema:familyName Mukherjee
145 schema:givenName Tridib
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014312315747.35
147 rdf:type schema:Person
148 sg:person.015573517335.70 schema:affiliation grid-institutes:grid.1007.6
149 schema:familyName Ghose
150 schema:givenName Aditya
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015573517335.70
152 rdf:type schema:Person
153 grid-institutes:None schema:alternateName Xerox Research Center Europe, Grenoble, France
154 Xerox Research Center India, Bangalore, India
155 schema:name Xerox Research Center Europe, Grenoble, France
156 Xerox Research Center India, Bangalore, India
157 rdf:type schema:Organization
158 grid-institutes:grid.1007.6 schema:alternateName University of Wollongong, 2522, Wollongong, NSW, Australia
159 schema:name University of Wollongong, 2522, Wollongong, NSW, Australia
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...