Artistic Style Transfer for Videos View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2016-08-27

AUTHORS

Manuel Ruder , Alexey Dosovitskiy , Thomas Brox

ABSTRACT

In the past, manually re-drawing an image in a certain artistic style required a professional artist and a long time. Doing this for a video sequence single-handed was beyond imagination. Nowadays computers provide new possibilities. We present an approach that transfers the style from one image (for example, a painting) to a whole video sequence. We make use of recent advances in style transfer in still images and propose new initializations and loss functions applicable to videos. This allows us to generate consistent and stable stylized video sequences, even in cases with large motion and strong occlusion. We show that the proposed method clearly outperforms simpler baselines both qualitatively and quantitatively. More... »

PAGES

26-36

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-45886-1_3

DOI

http://dx.doi.org/10.1007/978-3-319-45886-1_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044711914


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruder", 
        "givenName": "Manuel", 
        "id": "sg:person.010615500061.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010615500061.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dosovitskiy", 
        "givenName": "Alexey", 
        "id": "sg:person.011726376703.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011726376703.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brox", 
        "givenName": "Thomas", 
        "id": "sg:person.012443225372.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-08-27", 
    "datePublishedReg": "2016-08-27", 
    "description": "In the past, manually re-drawing an image in a certain artistic style required a professional artist and a long time. Doing this for a video sequence single-handed was beyond imagination. Nowadays computers provide new possibilities. We present an approach that transfers the style from one image (for example, a painting) to a whole video sequence. We make use of recent advances in style transfer in still images and propose new initializations and loss functions applicable to videos. This allows us to generate consistent and stable stylized video sequences, even in cases with large motion and strong occlusion. We show that the proposed method clearly outperforms simpler baselines both qualitatively and quantitatively.", 
    "editor": [
      {
        "familyName": "Rosenhahn", 
        "givenName": "Bodo", 
        "type": "Person"
      }, 
      {
        "familyName": "Andres", 
        "givenName": "Bjoern", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-45886-1_3", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-45885-4", 
        "978-3-319-45886-1"
      ], 
      "name": "Pattern Recognition", 
      "type": "Book"
    }, 
    "keywords": [
      "large motion", 
      "loss function", 
      "video sequences", 
      "new initialization", 
      "motion", 
      "simple baseline", 
      "initialization", 
      "style transfer", 
      "long time", 
      "computer", 
      "new possibilities", 
      "whole video sequence", 
      "function", 
      "approach", 
      "certain artistic style", 
      "sequence", 
      "artistic style transfer", 
      "recent advances", 
      "transfer", 
      "cases", 
      "strong occlusions", 
      "images", 
      "possibility", 
      "video", 
      "time", 
      "artistic style", 
      "advances", 
      "use", 
      "past", 
      "professional artists", 
      "style", 
      "method", 
      "occlusion", 
      "artists", 
      "imagination", 
      "baseline"
    ], 
    "name": "Artistic Style Transfer for Videos", 
    "pagination": "26-36", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044711914"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-45886-1_3"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-45886-1_3", 
      "https://app.dimensions.ai/details/publication/pub.1044711914"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_211.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-45886-1_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45886-1_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45886-1_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45886-1_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45886-1_3'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      22 PREDICATES      60 URIs      53 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-45886-1_3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf7115c9c5fd641d1a586f6a920154308
4 schema:datePublished 2016-08-27
5 schema:datePublishedReg 2016-08-27
6 schema:description In the past, manually re-drawing an image in a certain artistic style required a professional artist and a long time. Doing this for a video sequence single-handed was beyond imagination. Nowadays computers provide new possibilities. We present an approach that transfers the style from one image (for example, a painting) to a whole video sequence. We make use of recent advances in style transfer in still images and propose new initializations and loss functions applicable to videos. This allows us to generate consistent and stable stylized video sequences, even in cases with large motion and strong occlusion. We show that the proposed method clearly outperforms simpler baselines both qualitatively and quantitatively.
7 schema:editor N96b7dc32029c46db8881764c77004702
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N77deb18e889247808a1f3a51d40febba
11 schema:keywords advances
12 approach
13 artistic style
14 artistic style transfer
15 artists
16 baseline
17 cases
18 certain artistic style
19 computer
20 function
21 images
22 imagination
23 initialization
24 large motion
25 long time
26 loss function
27 method
28 motion
29 new initialization
30 new possibilities
31 occlusion
32 past
33 possibility
34 professional artists
35 recent advances
36 sequence
37 simple baseline
38 strong occlusions
39 style
40 style transfer
41 time
42 transfer
43 use
44 video
45 video sequences
46 whole video sequence
47 schema:name Artistic Style Transfer for Videos
48 schema:pagination 26-36
49 schema:productId N3a6afa077e5247e1a38d1cfac31497b6
50 Nf30b7e68ce194c9bbccd9f39644b238d
51 schema:publisher Nfbf3f53af2ad474a8fa52da565e0453a
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044711914
53 https://doi.org/10.1007/978-3-319-45886-1_3
54 schema:sdDatePublished 2022-12-01T06:48
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N2140b0279b5242df91a80e748030f115
57 schema:url https://doi.org/10.1007/978-3-319-45886-1_3
58 sgo:license sg:explorer/license/
59 sgo:sdDataset chapters
60 rdf:type schema:Chapter
61 N2140b0279b5242df91a80e748030f115 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N32642de56cb24a7796a3333ceb8ac6ec rdf:first sg:person.011726376703.15
64 rdf:rest N4898da53e9454958987b4b77c98482f5
65 N3682d5545dd3408c8ec4fec299b9d16f schema:familyName Rosenhahn
66 schema:givenName Bodo
67 rdf:type schema:Person
68 N3a61fdc0730b41309f599fabf6018c82 rdf:first Na30ebd2da100425895f6f761e7bbe4fa
69 rdf:rest rdf:nil
70 N3a6afa077e5247e1a38d1cfac31497b6 schema:name doi
71 schema:value 10.1007/978-3-319-45886-1_3
72 rdf:type schema:PropertyValue
73 N4898da53e9454958987b4b77c98482f5 rdf:first sg:person.012443225372.65
74 rdf:rest rdf:nil
75 N77deb18e889247808a1f3a51d40febba schema:isbn 978-3-319-45885-4
76 978-3-319-45886-1
77 schema:name Pattern Recognition
78 rdf:type schema:Book
79 N96b7dc32029c46db8881764c77004702 rdf:first N3682d5545dd3408c8ec4fec299b9d16f
80 rdf:rest N3a61fdc0730b41309f599fabf6018c82
81 Na30ebd2da100425895f6f761e7bbe4fa schema:familyName Andres
82 schema:givenName Bjoern
83 rdf:type schema:Person
84 Nf30b7e68ce194c9bbccd9f39644b238d schema:name dimensions_id
85 schema:value pub.1044711914
86 rdf:type schema:PropertyValue
87 Nf7115c9c5fd641d1a586f6a920154308 rdf:first sg:person.010615500061.50
88 rdf:rest N32642de56cb24a7796a3333ceb8ac6ec
89 Nfbf3f53af2ad474a8fa52da565e0453a schema:name Springer Nature
90 rdf:type schema:Organisation
91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
92 schema:name Information and Computing Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
95 schema:name Artificial Intelligence and Image Processing
96 rdf:type schema:DefinedTerm
97 sg:person.010615500061.50 schema:affiliation grid-institutes:grid.5963.9
98 schema:familyName Ruder
99 schema:givenName Manuel
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010615500061.50
101 rdf:type schema:Person
102 sg:person.011726376703.15 schema:affiliation grid-institutes:grid.5963.9
103 schema:familyName Dosovitskiy
104 schema:givenName Alexey
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011726376703.15
106 rdf:type schema:Person
107 sg:person.012443225372.65 schema:affiliation grid-institutes:grid.5963.9
108 schema:familyName Brox
109 schema:givenName Thomas
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65
111 rdf:type schema:Person
112 grid-institutes:grid.5963.9 schema:alternateName Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany
113 schema:name Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...