Artistic Style Transfer for Videos View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2016-08-27

AUTHORS

Manuel Ruder , Alexey Dosovitskiy , Thomas Brox

ABSTRACT

In the past, manually re-drawing an image in a certain artistic style required a professional artist and a long time. Doing this for a video sequence single-handed was beyond imagination. Nowadays computers provide new possibilities. We present an approach that transfers the style from one image (for example, a painting) to a whole video sequence. We make use of recent advances in style transfer in still images and propose new initializations and loss functions applicable to videos. This allows us to generate consistent and stable stylized video sequences, even in cases with large motion and strong occlusion. We show that the proposed method clearly outperforms simpler baselines both qualitatively and quantitatively. More... »

PAGES

26-36

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-45886-1_3

DOI

http://dx.doi.org/10.1007/978-3-319-45886-1_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044711914


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruder", 
        "givenName": "Manuel", 
        "id": "sg:person.010615500061.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010615500061.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dosovitskiy", 
        "givenName": "Alexey", 
        "id": "sg:person.011726376703.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011726376703.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brox", 
        "givenName": "Thomas", 
        "id": "sg:person.012443225372.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-08-27", 
    "datePublishedReg": "2016-08-27", 
    "description": "In the past, manually re-drawing an image in a certain artistic style required a professional artist and a long time. Doing this for a video sequence single-handed was beyond imagination. Nowadays computers provide new possibilities. We present an approach that transfers the style from one image (for example, a painting) to a whole video sequence. We make use of recent advances in style transfer in still images and propose new initializations and loss functions applicable to videos. This allows us to generate consistent and stable stylized video sequences, even in cases with large motion and strong occlusion. We show that the proposed method clearly outperforms simpler baselines both qualitatively and quantitatively.", 
    "editor": [
      {
        "familyName": "Rosenhahn", 
        "givenName": "Bodo", 
        "type": "Person"
      }, 
      {
        "familyName": "Andres", 
        "givenName": "Bjoern", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-45886-1_3", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-45885-4", 
        "978-3-319-45886-1"
      ], 
      "name": "Pattern Recognition", 
      "type": "Book"
    }, 
    "keywords": [
      "large motion", 
      "loss function", 
      "video sequences", 
      "new initialization", 
      "motion", 
      "simple baseline", 
      "initialization", 
      "style transfer", 
      "long time", 
      "computer", 
      "new possibilities", 
      "whole video sequence", 
      "function", 
      "approach", 
      "certain artistic style", 
      "sequence", 
      "artistic style transfer", 
      "recent advances", 
      "transfer", 
      "cases", 
      "strong occlusions", 
      "images", 
      "possibility", 
      "video", 
      "time", 
      "artistic style", 
      "advances", 
      "use", 
      "past", 
      "professional artists", 
      "style", 
      "method", 
      "occlusion", 
      "artists", 
      "imagination", 
      "baseline"
    ], 
    "name": "Artistic Style Transfer for Videos", 
    "pagination": "26-36", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044711914"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-45886-1_3"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-45886-1_3", 
      "https://app.dimensions.ai/details/publication/pub.1044711914"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_440.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-45886-1_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45886-1_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45886-1_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45886-1_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45886-1_3'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      22 PREDICATES      60 URIs      53 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-45886-1_3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nac16c86650d24cd580df9713b7d36321
4 schema:datePublished 2016-08-27
5 schema:datePublishedReg 2016-08-27
6 schema:description In the past, manually re-drawing an image in a certain artistic style required a professional artist and a long time. Doing this for a video sequence single-handed was beyond imagination. Nowadays computers provide new possibilities. We present an approach that transfers the style from one image (for example, a painting) to a whole video sequence. We make use of recent advances in style transfer in still images and propose new initializations and loss functions applicable to videos. This allows us to generate consistent and stable stylized video sequences, even in cases with large motion and strong occlusion. We show that the proposed method clearly outperforms simpler baselines both qualitatively and quantitatively.
7 schema:editor N5d7a808837834339a612864289489174
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf Nbe15c761a2e34c87ac1396426798d02e
11 schema:keywords advances
12 approach
13 artistic style
14 artistic style transfer
15 artists
16 baseline
17 cases
18 certain artistic style
19 computer
20 function
21 images
22 imagination
23 initialization
24 large motion
25 long time
26 loss function
27 method
28 motion
29 new initialization
30 new possibilities
31 occlusion
32 past
33 possibility
34 professional artists
35 recent advances
36 sequence
37 simple baseline
38 strong occlusions
39 style
40 style transfer
41 time
42 transfer
43 use
44 video
45 video sequences
46 whole video sequence
47 schema:name Artistic Style Transfer for Videos
48 schema:pagination 26-36
49 schema:productId N1a1e952fecb04d048be7b6897eeac0f3
50 N2783e1528f3a4656b20f9bd55cc4e8ee
51 schema:publisher Nb33f96c9d8634771adaf888e6c6a04de
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044711914
53 https://doi.org/10.1007/978-3-319-45886-1_3
54 schema:sdDatePublished 2022-09-02T16:16
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N5dff9474cc6d4f8296e429621fa7a31e
57 schema:url https://doi.org/10.1007/978-3-319-45886-1_3
58 sgo:license sg:explorer/license/
59 sgo:sdDataset chapters
60 rdf:type schema:Chapter
61 N1a1e952fecb04d048be7b6897eeac0f3 schema:name dimensions_id
62 schema:value pub.1044711914
63 rdf:type schema:PropertyValue
64 N2783e1528f3a4656b20f9bd55cc4e8ee schema:name doi
65 schema:value 10.1007/978-3-319-45886-1_3
66 rdf:type schema:PropertyValue
67 N2ccedb046d40425fbea6a37cecf8446b rdf:first N6bd8fe2adff3494dbfcd56829fc8bf2a
68 rdf:rest rdf:nil
69 N5d7a808837834339a612864289489174 rdf:first N7fbc93c0b02d41eeb1f3fcd948c44dab
70 rdf:rest N2ccedb046d40425fbea6a37cecf8446b
71 N5dff9474cc6d4f8296e429621fa7a31e schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N61426784abf14365a1112bd7840b4e54 rdf:first sg:person.011726376703.15
74 rdf:rest N6a1a07cde20340998530a2357defa06c
75 N6a1a07cde20340998530a2357defa06c rdf:first sg:person.012443225372.65
76 rdf:rest rdf:nil
77 N6bd8fe2adff3494dbfcd56829fc8bf2a schema:familyName Andres
78 schema:givenName Bjoern
79 rdf:type schema:Person
80 N7fbc93c0b02d41eeb1f3fcd948c44dab schema:familyName Rosenhahn
81 schema:givenName Bodo
82 rdf:type schema:Person
83 Nac16c86650d24cd580df9713b7d36321 rdf:first sg:person.010615500061.50
84 rdf:rest N61426784abf14365a1112bd7840b4e54
85 Nb33f96c9d8634771adaf888e6c6a04de schema:name Springer Nature
86 rdf:type schema:Organisation
87 Nbe15c761a2e34c87ac1396426798d02e schema:isbn 978-3-319-45885-4
88 978-3-319-45886-1
89 schema:name Pattern Recognition
90 rdf:type schema:Book
91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
92 schema:name Information and Computing Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
95 schema:name Artificial Intelligence and Image Processing
96 rdf:type schema:DefinedTerm
97 sg:person.010615500061.50 schema:affiliation grid-institutes:grid.5963.9
98 schema:familyName Ruder
99 schema:givenName Manuel
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010615500061.50
101 rdf:type schema:Person
102 sg:person.011726376703.15 schema:affiliation grid-institutes:grid.5963.9
103 schema:familyName Dosovitskiy
104 schema:givenName Alexey
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011726376703.15
106 rdf:type schema:Person
107 sg:person.012443225372.65 schema:affiliation grid-institutes:grid.5963.9
108 schema:familyName Brox
109 schema:givenName Thomas
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65
111 rdf:type schema:Person
112 grid-institutes:grid.5963.9 schema:alternateName Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany
113 schema:name Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...