A Parallel Version of SMS-EMOA for Many-Objective Optimization Problems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-08-31

AUTHORS

Raquel Hernández Gómez , Carlos A. Coello Coello , Enrique Alba

ABSTRACT

In the last decade, there has been a growing interest in multi-objective evolutionary algorithms that use performance indicators to guide the search. A simple and effective one is the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document}-Metric Selection Evolutionary Multi-Objective Algorithm (SMS-EMOA), which is based on the hypervolume indicator. Even though the maximization of the hypervolume is equivalent to achieving Pareto optimality, its computational cost increases exponentially with the number of objectives, which severely limits its applicability to many-objective optimization problems. In this paper, we present a parallel version of SMS-EMOA, where the execution time is reduced through an asynchronous island model with micro-populations, and diversity is preserved by external archives that are pruned to a fixed size employing a recently created technique based on the Parallel-Coordinates graph. The proposed approach, called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document}-PAMICRO (PArallel MICRo Optimizer based on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} metric), is compared to the original SMS-EMOA and another state-of-the-art algorithm (HypE) on the WFG test problems using up to 10 objectives. Our experimental results show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document}-PAMICRO is a promising alternative that can solve many-objective optimization problems at an affordable computational cost. More... »

PAGES

568-577

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-45823-6_53

DOI

http://dx.doi.org/10.1007/978-3-319-45823-6_53

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011089130


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computer Science Department, CINVESTAV-IPN (Evolutionary Computation Group), 07360, Mexico City, Mexico", 
          "id": "http://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "Computer Science Department, CINVESTAV-IPN (Evolutionary Computation Group), 07360, Mexico City, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hern\u00e1ndez G\u00f3mez", 
        "givenName": "Raquel", 
        "id": "sg:person.011717601547.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011717601547.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Science Department, CINVESTAV-IPN (Evolutionary Computation Group), 07360, Mexico City, Mexico", 
          "id": "http://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "Computer Science Department, CINVESTAV-IPN (Evolutionary Computation Group), 07360, Mexico City, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coello Coello", 
        "givenName": "Carlos A.", 
        "id": "sg:person.01345625161.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345625161.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad de M\u00e1laga, 29071, Malaga, Spain", 
          "id": "http://www.grid.ac/institutes/grid.10215.37", 
          "name": [
            "Universidad de M\u00e1laga, 29071, Malaga, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alba", 
        "givenName": "Enrique", 
        "id": "sg:person.013075206405.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075206405.86"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-08-31", 
    "datePublishedReg": "2016-08-31", 
    "description": "In the last decade, there has been a growing interest in multi-objective evolutionary algorithms that use performance indicators to guide the search. A simple and effective one is the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathcal {S}$$\\end{document}-Metric Selection Evolutionary Multi-Objective Algorithm (SMS-EMOA), which is based on the hypervolume indicator. Even though the maximization of the hypervolume is equivalent to achieving Pareto optimality, its computational cost increases exponentially with the number of objectives, which severely limits its applicability to many-objective optimization problems. In this paper, we present a parallel version of SMS-EMOA, where the execution time is reduced through an asynchronous island model with micro-populations, and diversity is preserved by external archives that are pruned to a fixed size employing a recently created technique based on the Parallel-Coordinates graph. The proposed approach, called \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathcal {S}$$\\end{document}-PAMICRO (PArallel MICRo Optimizer based on the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathcal {S}$$\\end{document} metric), is compared to the original SMS-EMOA and another state-of-the-art algorithm (HypE) on the WFG test problems using up\u00a0to 10 objectives. Our experimental results show that \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathcal {S}$$\\end{document}-PAMICRO is a promising alternative that can solve many-objective optimization problems at an affordable computational cost.", 
    "editor": [
      {
        "familyName": "Handl", 
        "givenName": "Julia", 
        "type": "Person"
      }, 
      {
        "familyName": "Hart", 
        "givenName": "Emma", 
        "type": "Person"
      }, 
      {
        "familyName": "Lewis", 
        "givenName": "Peter R.", 
        "type": "Person"
      }, 
      {
        "familyName": "L\u00f3pez-Ib\u00e1\u00f1ez", 
        "givenName": "Manuel", 
        "type": "Person"
      }, 
      {
        "familyName": "Ochoa", 
        "givenName": "Gabriela", 
        "type": "Person"
      }, 
      {
        "familyName": "Paechter", 
        "givenName": "Ben", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-45823-6_53", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-45822-9", 
        "978-3-319-45823-6"
      ], 
      "name": "Parallel Problem Solving from Nature \u2013 PPSN XIV", 
      "type": "Book"
    }, 
    "keywords": [
      "SMS-EMOA", 
      "objective optimization problems", 
      "parallel version", 
      "optimization problem", 
      "evolutionary multi-objective algorithm", 
      "multi-objective evolutionary algorithm", 
      "multi-objective algorithm", 
      "WFG test problems", 
      "computational cost increases", 
      "number of objectives", 
      "affordable computational cost", 
      "art algorithms", 
      "execution time", 
      "evolutionary algorithm", 
      "computational cost", 
      "external archive", 
      "hypervolume indicator", 
      "algorithm", 
      "test problems", 
      "experimental results", 
      "island model", 
      "Pareto optimality", 
      "performance indicators", 
      "hypervolume", 
      "graph", 
      "version", 
      "cost increases", 
      "optimality", 
      "maximization", 
      "search", 
      "last decade", 
      "cost", 
      "archives", 
      "applicability", 
      "technique", 
      "promising alternative", 
      "objective", 
      "model", 
      "interest", 
      "number", 
      "time", 
      "results", 
      "alternative", 
      "state", 
      "size", 
      "decades", 
      "diversity", 
      "indicators", 
      "increase", 
      "problem", 
      "paper", 
      "approach", 
      "Selection Evolutionary Multi-Objective Algorithm", 
      "asynchronous island model", 
      "Parallel-Coordinates graph", 
      "original SMS-EMOA"
    ], 
    "name": "A Parallel Version of SMS-EMOA for Many-Objective Optimization Problems", 
    "pagination": "568-577", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011089130"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-45823-6_53"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-45823-6_53", 
      "https://app.dimensions.ai/details/publication/pub.1011089130"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T19:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_121.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-45823-6_53"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45823-6_53'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45823-6_53'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45823-6_53'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45823-6_53'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      23 PREDICATES      81 URIs      74 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-45823-6_53 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nfb30efc61dac4a768e20151ccbce1f39
4 schema:datePublished 2016-08-31
5 schema:datePublishedReg 2016-08-31
6 schema:description In the last decade, there has been a growing interest in multi-objective evolutionary algorithms that use performance indicators to guide the search. A simple and effective one is the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document}-Metric Selection Evolutionary Multi-Objective Algorithm (SMS-EMOA), which is based on the hypervolume indicator. Even though the maximization of the hypervolume is equivalent to achieving Pareto optimality, its computational cost increases exponentially with the number of objectives, which severely limits its applicability to many-objective optimization problems. In this paper, we present a parallel version of SMS-EMOA, where the execution time is reduced through an asynchronous island model with micro-populations, and diversity is preserved by external archives that are pruned to a fixed size employing a recently created technique based on the Parallel-Coordinates graph. The proposed approach, called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document}-PAMICRO (PArallel MICRo Optimizer based on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} metric), is compared to the original SMS-EMOA and another state-of-the-art algorithm (HypE) on the WFG test problems using up to 10 objectives. Our experimental results show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document}-PAMICRO is a promising alternative that can solve many-objective optimization problems at an affordable computational cost.
7 schema:editor N1b202e3ae7d8492180cfca75f8a061a5
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N6bd4958de104407ab376621ebb3bd035
12 schema:keywords Parallel-Coordinates graph
13 Pareto optimality
14 SMS-EMOA
15 Selection Evolutionary Multi-Objective Algorithm
16 WFG test problems
17 affordable computational cost
18 algorithm
19 alternative
20 applicability
21 approach
22 archives
23 art algorithms
24 asynchronous island model
25 computational cost
26 computational cost increases
27 cost
28 cost increases
29 decades
30 diversity
31 evolutionary algorithm
32 evolutionary multi-objective algorithm
33 execution time
34 experimental results
35 external archive
36 graph
37 hypervolume
38 hypervolume indicator
39 increase
40 indicators
41 interest
42 island model
43 last decade
44 maximization
45 model
46 multi-objective algorithm
47 multi-objective evolutionary algorithm
48 number
49 number of objectives
50 objective
51 objective optimization problems
52 optimality
53 optimization problem
54 original SMS-EMOA
55 paper
56 parallel version
57 performance indicators
58 problem
59 promising alternative
60 results
61 search
62 size
63 state
64 technique
65 test problems
66 time
67 version
68 schema:name A Parallel Version of SMS-EMOA for Many-Objective Optimization Problems
69 schema:pagination 568-577
70 schema:productId N15723d74f12e401a87ecdba56eccc118
71 N383a9d9ff34f4db496fa77a33e8fdffa
72 schema:publisher N5d35e2cedf184adf8b5427aabd0ed95d
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011089130
74 https://doi.org/10.1007/978-3-319-45823-6_53
75 schema:sdDatePublished 2021-12-01T19:56
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher Nd2317b0274d8401a807f93a67acec7e4
78 schema:url https://doi.org/10.1007/978-3-319-45823-6_53
79 sgo:license sg:explorer/license/
80 sgo:sdDataset chapters
81 rdf:type schema:Chapter
82 N1510fce323bf4ee69caf58a5bba408d1 schema:familyName Ochoa
83 schema:givenName Gabriela
84 rdf:type schema:Person
85 N15723d74f12e401a87ecdba56eccc118 schema:name dimensions_id
86 schema:value pub.1011089130
87 rdf:type schema:PropertyValue
88 N186392cce549465cadfc37a7dbe6458e rdf:first N61ebdefe28644dfdbbbb8007b47e9878
89 rdf:rest N60f14f312940493ab399515c23f1790b
90 N1b202e3ae7d8492180cfca75f8a061a5 rdf:first Nf755f14c424b4f03aa346f7ddfec5bea
91 rdf:rest N186392cce549465cadfc37a7dbe6458e
92 N383a9d9ff34f4db496fa77a33e8fdffa schema:name doi
93 schema:value 10.1007/978-3-319-45823-6_53
94 rdf:type schema:PropertyValue
95 N5d35e2cedf184adf8b5427aabd0ed95d schema:name Springer Nature
96 rdf:type schema:Organisation
97 N60f14f312940493ab399515c23f1790b rdf:first N7765eed9cdbc4cc89d03f756a74c8ca1
98 rdf:rest N770dc65c34654615aca4f47588282ded
99 N61ebdefe28644dfdbbbb8007b47e9878 schema:familyName Hart
100 schema:givenName Emma
101 rdf:type schema:Person
102 N6bd4958de104407ab376621ebb3bd035 schema:isbn 978-3-319-45822-9
103 978-3-319-45823-6
104 schema:name Parallel Problem Solving from Nature – PPSN XIV
105 rdf:type schema:Book
106 N770dc65c34654615aca4f47588282ded rdf:first Nccfd4ac1909442bfa3022a1620249c9d
107 rdf:rest Nf8f7daa160974ab5909a51f29c5f2aee
108 N7765eed9cdbc4cc89d03f756a74c8ca1 schema:familyName Lewis
109 schema:givenName Peter R.
110 rdf:type schema:Person
111 N89e466cd5a8242f78331b297d99e6014 schema:familyName Paechter
112 schema:givenName Ben
113 rdf:type schema:Person
114 Nb1381d1b6f3b4f0d95e2d8d05f6ef84d rdf:first sg:person.01345625161.61
115 rdf:rest Nd2fecafb8a5b45afb3c7cef220b2792f
116 Nccfd4ac1909442bfa3022a1620249c9d schema:familyName López-Ibáñez
117 schema:givenName Manuel
118 rdf:type schema:Person
119 Nd2317b0274d8401a807f93a67acec7e4 schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 Nd2fecafb8a5b45afb3c7cef220b2792f rdf:first sg:person.013075206405.86
122 rdf:rest rdf:nil
123 Neb58daa7900a48f19676007f7cbac596 rdf:first N89e466cd5a8242f78331b297d99e6014
124 rdf:rest rdf:nil
125 Nf755f14c424b4f03aa346f7ddfec5bea schema:familyName Handl
126 schema:givenName Julia
127 rdf:type schema:Person
128 Nf8f7daa160974ab5909a51f29c5f2aee rdf:first N1510fce323bf4ee69caf58a5bba408d1
129 rdf:rest Neb58daa7900a48f19676007f7cbac596
130 Nfb30efc61dac4a768e20151ccbce1f39 rdf:first sg:person.011717601547.54
131 rdf:rest Nb1381d1b6f3b4f0d95e2d8d05f6ef84d
132 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
133 schema:name Mathematical Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
136 schema:name Numerical and Computational Mathematics
137 rdf:type schema:DefinedTerm
138 sg:person.011717601547.54 schema:affiliation grid-institutes:grid.418275.d
139 schema:familyName Hernández Gómez
140 schema:givenName Raquel
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011717601547.54
142 rdf:type schema:Person
143 sg:person.013075206405.86 schema:affiliation grid-institutes:grid.10215.37
144 schema:familyName Alba
145 schema:givenName Enrique
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075206405.86
147 rdf:type schema:Person
148 sg:person.01345625161.61 schema:affiliation grid-institutes:grid.418275.d
149 schema:familyName Coello Coello
150 schema:givenName Carlos A.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345625161.61
152 rdf:type schema:Person
153 grid-institutes:grid.10215.37 schema:alternateName Universidad de Málaga, 29071, Malaga, Spain
154 schema:name Universidad de Málaga, 29071, Malaga, Spain
155 rdf:type schema:Organization
156 grid-institutes:grid.418275.d schema:alternateName Computer Science Department, CINVESTAV-IPN (Evolutionary Computation Group), 07360, Mexico City, Mexico
157 schema:name Computer Science Department, CINVESTAV-IPN (Evolutionary Computation Group), 07360, Mexico City, Mexico
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...