Robust and Confident Predictor Selection in Metabolomics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-12-16

AUTHORS

J. A. Hageman , B. Engel , Ric C. H. de Vos , Roland Mumm , Robert D. Hall , H. Jwanro , D. Crouzillat , J. C. Spadone , F. A. van Eeuwijk

ABSTRACT

Metabolomics is a proven tool to obtain information about differences in food stuffs and to select biochemical markers for sensory quality of food products. A valuable application of untargeted metabolomics is the selection of metabolites that are (highly) predictive for sensory or phenotypical traits for use as (bio) markers. This chapter demonstrates how to robustly select key metabolites and evaluate their predictive properties. The proposed approach constrains the number of selected metabolites, searching for an optimal number of predictive metabolites by cross-validation. This mitigates the problem of selection of spurious metabolites. It also enables straightforward use of linear regression. In the present implementation simple forward selection is used. In concert with a second cross-validation to assess the predictive power of the selected set of metabolites, the proposed method involves two leave-one-out cross-validations and will be referred to as LOO2CV. In the second leave-one-out cross-validation a multitude of regression models is generated. This offers additional information that is potentially useful for selection of key metabolites in the spirit of stability selection. The proposed LOO2CV approach is illustrated with sensory and large-scale metabolomics data from a set of 76 different cocoa liquors. The proposed approach is compared with conventional stepwise regression and stepwise regression in concert with cross-validation for evaluation of predictive power of the model. More... »

PAGES

239-257

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-45809-0_13

DOI

http://dx.doi.org/10.1007/978-3-319-45809-0_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000605547


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC, Leiden, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.450196.f", 
          "name": [
            "Biometris-Applied Statistics, Wageningen University, 16, 6700 AA, Wageningen, The Netherlands", 
            "Centre for BioSystems Genomics, 98, 6700 AB, Wageningen, The Netherlands", 
            "Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hageman", 
        "givenName": "J. A.", 
        "id": "sg:person.0770101362.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770101362.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC, Leiden, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.450196.f", 
          "name": [
            "Biometris-Applied Statistics, Wageningen University, 16, 6700 AA, Wageningen, The Netherlands", 
            "Centre for BioSystems Genomics, 98, 6700 AB, Wageningen, The Netherlands", 
            "Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Engel", 
        "givenName": "B.", 
        "id": "sg:person.0702632255.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702632255.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Plant Research International, 619, 6700 AP, Wageningen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Centre for BioSystems Genomics, 98, 6700 AB, Wageningen, The Netherlands", 
            "Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC, Leiden, The Netherlands", 
            "Plant Research International, 619, 6700 AP, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Vos", 
        "givenName": "Ric C. H.", 
        "id": "sg:person.014575024362.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014575024362.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Plant Research International, 619, 6700 AP, Wageningen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Centre for BioSystems Genomics, 98, 6700 AB, Wageningen, The Netherlands", 
            "Plant Research International, 619, 6700 AP, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mumm", 
        "givenName": "Roland", 
        "id": "sg:person.01366416351.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366416351.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Netherlands Consortium for Systems Biology, 94215, 1090 GE, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.508446.b", 
          "name": [
            "Centre for BioSystems Genomics, 98, 6700 AB, Wageningen, The Netherlands", 
            "Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC, Leiden, The Netherlands", 
            "Plant Research International, 619, 6700 AP, Wageningen, The Netherlands", 
            "Netherlands Consortium for Systems Biology, 94215, 1090 GE, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hall", 
        "givenName": "Robert D.", 
        "id": "sg:person.0704576323.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704576323.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory of Plant Physiology, Wageningen University, 658, 6700 AR, Wageningen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Laboratory of Plant Physiology, Wageningen University, 658, 6700 AR, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jwanro", 
        "givenName": "H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory of Plant Physiology, Wageningen University, 658, 6700 AR, Wageningen, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Laboratory of Plant Physiology, Wageningen University, 658, 6700 AR, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crouzillat", 
        "givenName": "D.", 
        "id": "sg:person.01262330345.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262330345.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nestle Research Center, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.419905.0", 
          "name": [
            "Nestle Research Center, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spadone", 
        "givenName": "J. C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Netherlands Consortium for Systems Biology, 94215, 1090 GE, Amsterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.508446.b", 
          "name": [
            "Biometris-Applied Statistics, Wageningen University, 16, 6700 AA, Wageningen, The Netherlands", 
            "Centre for BioSystems Genomics, 98, 6700 AB, Wageningen, The Netherlands", 
            "Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC, Leiden, The Netherlands", 
            "Netherlands Consortium for Systems Biology, 94215, 1090 GE, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Eeuwijk", 
        "givenName": "F. A.", 
        "id": "sg:person.0650756633.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650756633.82"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-12-16", 
    "datePublishedReg": "2016-12-16", 
    "description": "Metabolomics is a proven tool to obtain information about differences in food stuffs and to select biochemical markers for sensory quality of food products. A valuable application of untargeted metabolomics is the selection of metabolites that are (highly) predictive for sensory or phenotypical traits for use as (bio) markers. This chapter demonstrates how to robustly select key metabolites and evaluate their predictive properties. The proposed approach constrains the number of selected metabolites, searching for an optimal number of predictive metabolites by cross-validation. This mitigates the problem of selection of spurious metabolites. It also enables straightforward use of linear regression. In the present implementation simple forward selection is used. In concert with a second cross-validation to assess the predictive power of the selected set of metabolites, the proposed method involves two leave-one-out cross-validations and will be referred to as LOO2CV. In the second leave-one-out cross-validation a multitude of regression models is generated. This offers additional information that is potentially useful for selection of key metabolites in the spirit of stability selection. The proposed LOO2CV approach is illustrated with sensory and large-scale metabolomics data from a set of 76 different cocoa liquors. The proposed approach is compared with conventional stepwise regression and stepwise regression in concert with cross-validation for evaluation of predictive power of the model.", 
    "editor": [
      {
        "familyName": "Datta", 
        "givenName": "Susmita", 
        "type": "Person"
      }, 
      {
        "familyName": "Mertens", 
        "givenName": "Bart J. A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-45809-0_13", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-45807-6", 
        "978-3-319-45809-0"
      ], 
      "name": "Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry", 
      "type": "Book"
    }, 
    "keywords": [
      "conventional stepwise regression", 
      "one-out", 
      "large-scale metabolomics data", 
      "problem of selection", 
      "forward selection", 
      "predictor selection", 
      "optimal number", 
      "stability selection", 
      "straightforward use", 
      "stepwise regression", 
      "information", 
      "valuable applications", 
      "predictive power", 
      "biochemical markers", 
      "set", 
      "selection", 
      "predictive properties", 
      "linear regression", 
      "regression models", 
      "additional information", 
      "metabolomics data", 
      "tool", 
      "markers", 
      "applications", 
      "untargeted metabolomics", 
      "metabolites", 
      "key metabolites", 
      "approach", 
      "regression", 
      "model", 
      "phenotypical traits", 
      "predictive metabolites", 
      "problem", 
      "metabolomics", 
      "selection of metabolites", 
      "number", 
      "power", 
      "set of metabolites", 
      "quality", 
      "use", 
      "method", 
      "multitude", 
      "food stuffs", 
      "concert", 
      "data", 
      "differences", 
      "food products", 
      "leave", 
      "evaluation", 
      "chapter", 
      "properties", 
      "stuff", 
      "spirit", 
      "sensory quality", 
      "products", 
      "traits", 
      "cocoa liquor", 
      "liquor", 
      "spurious metabolites", 
      "present implementation simple forward selection", 
      "implementation simple forward selection", 
      "simple forward selection", 
      "LOO2CV", 
      "second leave", 
      "LOO2CV approach", 
      "different cocoa liquors", 
      "Confident Predictor Selection"
    ], 
    "name": "Robust and Confident Predictor Selection in Metabolomics", 
    "pagination": "239-257", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000605547"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-45809-0_13"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-45809-0_13", 
      "https://app.dimensions.ai/details/publication/pub.1000605547"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_440.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-45809-0_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45809-0_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45809-0_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45809-0_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45809-0_13'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      23 PREDICATES      91 URIs      84 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-45809-0_13 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N2d869e1230df4a0aa7784a3ca7422e8e
4 schema:datePublished 2016-12-16
5 schema:datePublishedReg 2016-12-16
6 schema:description Metabolomics is a proven tool to obtain information about differences in food stuffs and to select biochemical markers for sensory quality of food products. A valuable application of untargeted metabolomics is the selection of metabolites that are (highly) predictive for sensory or phenotypical traits for use as (bio) markers. This chapter demonstrates how to robustly select key metabolites and evaluate their predictive properties. The proposed approach constrains the number of selected metabolites, searching for an optimal number of predictive metabolites by cross-validation. This mitigates the problem of selection of spurious metabolites. It also enables straightforward use of linear regression. In the present implementation simple forward selection is used. In concert with a second cross-validation to assess the predictive power of the selected set of metabolites, the proposed method involves two leave-one-out cross-validations and will be referred to as LOO2CV. In the second leave-one-out cross-validation a multitude of regression models is generated. This offers additional information that is potentially useful for selection of key metabolites in the spirit of stability selection. The proposed LOO2CV approach is illustrated with sensory and large-scale metabolomics data from a set of 76 different cocoa liquors. The proposed approach is compared with conventional stepwise regression and stepwise regression in concert with cross-validation for evaluation of predictive power of the model.
7 schema:editor N736007218fc54702a845d65caba588d7
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nd4c91b7d243e44be888c0e9478c84ab7
12 schema:keywords Confident Predictor Selection
13 LOO2CV
14 LOO2CV approach
15 additional information
16 applications
17 approach
18 biochemical markers
19 chapter
20 cocoa liquor
21 concert
22 conventional stepwise regression
23 data
24 differences
25 different cocoa liquors
26 evaluation
27 food products
28 food stuffs
29 forward selection
30 implementation simple forward selection
31 information
32 key metabolites
33 large-scale metabolomics data
34 leave
35 linear regression
36 liquor
37 markers
38 metabolites
39 metabolomics
40 metabolomics data
41 method
42 model
43 multitude
44 number
45 one-out
46 optimal number
47 phenotypical traits
48 power
49 predictive metabolites
50 predictive power
51 predictive properties
52 predictor selection
53 present implementation simple forward selection
54 problem
55 problem of selection
56 products
57 properties
58 quality
59 regression
60 regression models
61 second leave
62 selection
63 selection of metabolites
64 sensory quality
65 set
66 set of metabolites
67 simple forward selection
68 spirit
69 spurious metabolites
70 stability selection
71 stepwise regression
72 straightforward use
73 stuff
74 tool
75 traits
76 untargeted metabolomics
77 use
78 valuable applications
79 schema:name Robust and Confident Predictor Selection in Metabolomics
80 schema:pagination 239-257
81 schema:productId N511593a6e92c444f9deafd97ea309255
82 N6178fc12327d47e3823e75484819c7b9
83 schema:publisher Nd86e77e017694e269e108845b0e584b5
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000605547
85 https://doi.org/10.1007/978-3-319-45809-0_13
86 schema:sdDatePublished 2021-12-01T20:10
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher N95625c5d43b549e08023b75ef958763e
89 schema:url https://doi.org/10.1007/978-3-319-45809-0_13
90 sgo:license sg:explorer/license/
91 sgo:sdDataset chapters
92 rdf:type schema:Chapter
93 N0715b812a76b4b9a8d251b966964bb2a rdf:first sg:person.0704576323.20
94 rdf:rest Na6b85dcc07dd4ad8b8bc1f115245164d
95 N09125ab57ff742a89f26efc1187e5047 rdf:first sg:person.0650756633.82
96 rdf:rest rdf:nil
97 N14374442065e47a5b657f1a262f6376a rdf:first Nfdead5c8da1745a8be4329f52cbc1c7a
98 rdf:rest N09125ab57ff742a89f26efc1187e5047
99 N2d869e1230df4a0aa7784a3ca7422e8e rdf:first sg:person.0770101362.75
100 rdf:rest Ndab596bfadd7407db837d920a312da2b
101 N3ba560a973b94642b36e12b37c8abaac schema:affiliation grid-institutes:grid.4818.5
102 schema:familyName Jwanro
103 schema:givenName H.
104 rdf:type schema:Person
105 N511593a6e92c444f9deafd97ea309255 schema:name doi
106 schema:value 10.1007/978-3-319-45809-0_13
107 rdf:type schema:PropertyValue
108 N5e288bdb57774c4db3fdab61c4c6d0d4 schema:familyName Datta
109 schema:givenName Susmita
110 rdf:type schema:Person
111 N6178fc12327d47e3823e75484819c7b9 schema:name dimensions_id
112 schema:value pub.1000605547
113 rdf:type schema:PropertyValue
114 N736007218fc54702a845d65caba588d7 rdf:first N5e288bdb57774c4db3fdab61c4c6d0d4
115 rdf:rest Na18109f47bed45d3aa4549b0bd143f7a
116 N9251638c87bb4790924ea733cfb05707 schema:familyName Mertens
117 schema:givenName Bart J. A.
118 rdf:type schema:Person
119 N95625c5d43b549e08023b75ef958763e schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 Na18109f47bed45d3aa4549b0bd143f7a rdf:first N9251638c87bb4790924ea733cfb05707
122 rdf:rest rdf:nil
123 Na6b85dcc07dd4ad8b8bc1f115245164d rdf:first N3ba560a973b94642b36e12b37c8abaac
124 rdf:rest Nf042aca15c3d41b89922e17739a09246
125 Nab74b79831d446ea99eeec5fecb3d20d rdf:first sg:person.01366416351.05
126 rdf:rest N0715b812a76b4b9a8d251b966964bb2a
127 Nd4c91b7d243e44be888c0e9478c84ab7 schema:isbn 978-3-319-45807-6
128 978-3-319-45809-0
129 schema:name Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry
130 rdf:type schema:Book
131 Nd86e77e017694e269e108845b0e584b5 schema:name Springer Nature
132 rdf:type schema:Organisation
133 Ndab596bfadd7407db837d920a312da2b rdf:first sg:person.0702632255.66
134 rdf:rest Ne39312318655456191b312f8048654cb
135 Ne39312318655456191b312f8048654cb rdf:first sg:person.014575024362.22
136 rdf:rest Nab74b79831d446ea99eeec5fecb3d20d
137 Nf042aca15c3d41b89922e17739a09246 rdf:first sg:person.01262330345.72
138 rdf:rest N14374442065e47a5b657f1a262f6376a
139 Nfdead5c8da1745a8be4329f52cbc1c7a schema:affiliation grid-institutes:grid.419905.0
140 schema:familyName Spadone
141 schema:givenName J. C.
142 rdf:type schema:Person
143 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
144 schema:name Mathematical Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
147 schema:name Statistics
148 rdf:type schema:DefinedTerm
149 sg:person.01262330345.72 schema:affiliation grid-institutes:grid.4818.5
150 schema:familyName Crouzillat
151 schema:givenName D.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262330345.72
153 rdf:type schema:Person
154 sg:person.01366416351.05 schema:affiliation grid-institutes:grid.4818.5
155 schema:familyName Mumm
156 schema:givenName Roland
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366416351.05
158 rdf:type schema:Person
159 sg:person.014575024362.22 schema:affiliation grid-institutes:grid.4818.5
160 schema:familyName de Vos
161 schema:givenName Ric C. H.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014575024362.22
163 rdf:type schema:Person
164 sg:person.0650756633.82 schema:affiliation grid-institutes:grid.508446.b
165 schema:familyName van Eeuwijk
166 schema:givenName F. A.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650756633.82
168 rdf:type schema:Person
169 sg:person.0702632255.66 schema:affiliation grid-institutes:grid.450196.f
170 schema:familyName Engel
171 schema:givenName B.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702632255.66
173 rdf:type schema:Person
174 sg:person.0704576323.20 schema:affiliation grid-institutes:grid.508446.b
175 schema:familyName Hall
176 schema:givenName Robert D.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704576323.20
178 rdf:type schema:Person
179 sg:person.0770101362.75 schema:affiliation grid-institutes:grid.450196.f
180 schema:familyName Hageman
181 schema:givenName J. A.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770101362.75
183 rdf:type schema:Person
184 grid-institutes:grid.419905.0 schema:alternateName Nestle Research Center, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland
185 schema:name Nestle Research Center, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland
186 rdf:type schema:Organization
187 grid-institutes:grid.450196.f schema:alternateName Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
188 schema:name Biometris-Applied Statistics, Wageningen University, 16, 6700 AA, Wageningen, The Netherlands
189 Centre for BioSystems Genomics, 98, 6700 AB, Wageningen, The Netherlands
190 Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
191 rdf:type schema:Organization
192 grid-institutes:grid.4818.5 schema:alternateName Laboratory of Plant Physiology, Wageningen University, 658, 6700 AR, Wageningen, The Netherlands
193 Plant Research International, 619, 6700 AP, Wageningen, The Netherlands
194 schema:name Centre for BioSystems Genomics, 98, 6700 AB, Wageningen, The Netherlands
195 Laboratory of Plant Physiology, Wageningen University, 658, 6700 AR, Wageningen, The Netherlands
196 Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
197 Plant Research International, 619, 6700 AP, Wageningen, The Netherlands
198 rdf:type schema:Organization
199 grid-institutes:grid.508446.b schema:alternateName Netherlands Consortium for Systems Biology, 94215, 1090 GE, Amsterdam, The Netherlands
200 schema:name Biometris-Applied Statistics, Wageningen University, 16, 6700 AA, Wageningen, The Netherlands
201 Centre for BioSystems Genomics, 98, 6700 AB, Wageningen, The Netherlands
202 Netherlands Consortium for Systems Biology, 94215, 1090 GE, Amsterdam, The Netherlands
203 Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
204 Plant Research International, 619, 6700 AP, Wageningen, The Netherlands
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...