Robust and Confident Predictor Selection in Metabolomics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

J. A. Hageman , B. Engel , Ric C. H. de Vos , Roland Mumm , Robert D. Hall , H. Jwanro , D. Crouzillat , J. C. Spadone , F. A. van Eeuwijk

ABSTRACT

Metabolomics is a proven tool to obtain information about differences in food stuffs and to select biochemical markers for sensory quality of food products. A valuable application of untargeted metabolomics is the selection of metabolites that are (highly) predictive for sensory or phenotypical traits for use as (bio) markers. This chapter demonstrates how to robustly select key metabolites and evaluate their predictive properties. The proposed approach constrains the number of selected metabolites, searching for an optimal number of predictive metabolites by cross-validation. This mitigates the problem of selection of spurious metabolites. It also enables straightforward use of linear regression. In the present implementation simple forward selection is used. In concert with a second cross-validation to assess the predictive power of the selected set of metabolites, the proposed method involves two leave-one-out cross-validations and will be referred to as LOO2CV. In the second leave-one-out cross-validation a multitude of regression models is generated. This offers additional information that is potentially useful for selection of key metabolites in the spirit of stability selection. The proposed LOO2CV approach is illustrated with sensory and large-scale metabolomics data from a set of 76 different cocoa liquors. The proposed approach is compared with conventional stepwise regression and stepwise regression in concert with cross-validation for evaluation of predictive power of the model. More... »

PAGES

239-257

References to SciGraph publications

Book

TITLE

Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry

ISBN

978-3-319-45807-6
978-3-319-45809-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-45809-0_13

DOI

http://dx.doi.org/10.1007/978-3-319-45809-0_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000605547


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Netherlands Metabolomics Centre", 
          "id": "https://www.grid.ac/institutes/grid.450196.f", 
          "name": [
            "Biometris-Applied Statistics, Wageningen University", 
            "Centre for BioSystems Genomics", 
            "Netherlands Metabolomics Centre"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hageman", 
        "givenName": "J. A.", 
        "id": "sg:person.0770101362.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770101362.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Netherlands Metabolomics Centre", 
          "id": "https://www.grid.ac/institutes/grid.450196.f", 
          "name": [
            "Biometris-Applied Statistics, Wageningen University", 
            "Centre for BioSystems Genomics", 
            "Netherlands Metabolomics Centre"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Engel", 
        "givenName": "B.", 
        "id": "sg:person.0702632255.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702632255.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wageningen University & Research", 
          "id": "https://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Centre for BioSystems Genomics", 
            "Netherlands Metabolomics Centre", 
            "Plant Research International"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Vos", 
        "givenName": "Ric C. H.", 
        "id": "sg:person.014575024362.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014575024362.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wageningen University & Research", 
          "id": "https://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Centre for BioSystems Genomics", 
            "Plant Research International"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mumm", 
        "givenName": "Roland", 
        "id": "sg:person.01366416351.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366416351.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wageningen University & Research", 
          "id": "https://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Centre for BioSystems Genomics", 
            "Netherlands Metabolomics Centre", 
            "Plant Research International", 
            "Netherlands Consortium for Systems Biology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hall", 
        "givenName": "Robert D.", 
        "id": "sg:person.0704576323.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704576323.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratory of Plant Physiology, Wageningen University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jwanro", 
        "givenName": "H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratory of Plant Physiology, Wageningen University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crouzillat", 
        "givenName": "D.", 
        "id": "sg:person.01262330345.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262330345.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Nestle Research Center"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spadone", 
        "givenName": "J. C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Netherlands Metabolomics Centre", 
          "id": "https://www.grid.ac/institutes/grid.450196.f", 
          "name": [
            "Biometris-Applied Statistics, Wageningen University", 
            "Centre for BioSystems Genomics", 
            "Netherlands Metabolomics Centre", 
            "Netherlands Consortium for Systems Biology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Eeuwijk", 
        "givenName": "F. A.", 
        "id": "sg:person.0650756633.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650756633.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/2012jd017864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000021919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2010.00740.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000696823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2010.00740.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000696823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trac.2011.04.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001769868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2011.01.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003104353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10681-011-0374-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003233530", 
          "https://doi.org/10.1007/s10681-011-0374-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008704456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0003259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009206578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177706647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010635193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procbio.2013.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012093321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-007-0099-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022973183", 
          "https://doi.org/10.1007/s11306-007-0099-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028368975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2007.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029308877", 
          "https://doi.org/10.1038/nprot.2007.95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2007.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029308877", 
          "https://doi.org/10.1038/nprot.2007.95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.109.146670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030411441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033471111", 
          "https://doi.org/10.1038/ng1815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033471111", 
          "https://doi.org/10.1038/ng1815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033486944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2010.03626.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035715752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-011-0368-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042363301", 
          "https://doi.org/10.1007/s11306-011-0368-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2007.04.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051480721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf072990e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055907560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf072990e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055907560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf901673d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055926835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf901673d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055926835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00401706.1974.10489231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058284719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109705929", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4541-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705929", 
          "https://doi.org/10.1007/978-1-4899-4541-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4541-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705929", 
          "https://doi.org/10.1007/978-1-4899-4541-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "Metabolomics is a proven tool to obtain information about differences in food stuffs and to select biochemical markers for sensory quality of food products. A valuable application of untargeted metabolomics is the selection of metabolites that are (highly) predictive for sensory or phenotypical traits for use as (bio) markers. This chapter demonstrates how to robustly select key metabolites and evaluate their predictive properties. The proposed approach constrains the number of selected metabolites, searching for an optimal number of predictive metabolites by cross-validation. This mitigates the problem of selection of spurious metabolites. It also enables straightforward use of linear regression. In the present implementation simple forward selection is used. In concert with a second cross-validation to assess the predictive power of the selected set of metabolites, the proposed method involves two leave-one-out cross-validations and will be referred to as LOO2CV. In the second leave-one-out cross-validation a multitude of regression models is generated. This offers additional information that is potentially useful for selection of key metabolites in the spirit of stability selection. The proposed LOO2CV approach is illustrated with sensory and large-scale metabolomics data from a set of 76 different cocoa liquors. The proposed approach is compared with conventional stepwise regression and stepwise regression in concert with cross-validation for evaluation of predictive power of the model.", 
    "editor": [
      {
        "familyName": "Datta", 
        "givenName": "Susmita", 
        "type": "Person"
      }, 
      {
        "familyName": "Mertens", 
        "givenName": "Bart J. A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-45809-0_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-45807-6", 
        "978-3-319-45809-0"
      ], 
      "name": "Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry", 
      "type": "Book"
    }, 
    "name": "Robust and Confident Predictor Selection in Metabolomics", 
    "pagination": "239-257", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-45809-0_13"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "02e226a6958faab112a93cd3540b845b2d8632373a9b4150dc6bd582d0e174d6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000605547"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-45809-0_13", 
      "https://app.dimensions.ai/details/publication/pub.1000605547"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000579.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-45809-0_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45809-0_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45809-0_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45809-0_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45809-0_13'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      23 PREDICATES      50 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-45809-0_13 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N1eb09982b63f4f2889228ce9237aef0a
4 schema:citation sg:pub.10.1007/978-1-4899-4541-9
5 sg:pub.10.1007/s10681-011-0374-5
6 sg:pub.10.1007/s11306-007-0099-6
7 sg:pub.10.1007/s11306-011-0368-2
8 sg:pub.10.1038/ng1815
9 sg:pub.10.1038/nprot.2007.95
10 https://app.dimensions.ai/details/publication/pub.1109705929
11 https://doi.org/10.1002/cem.782
12 https://doi.org/10.1016/j.aca.2007.04.043
13 https://doi.org/10.1016/j.aca.2011.01.039
14 https://doi.org/10.1016/j.procbio.2013.10.013
15 https://doi.org/10.1016/j.trac.2011.04.019
16 https://doi.org/10.1021/jf072990e
17 https://doi.org/10.1021/jf901673d
18 https://doi.org/10.1029/2012jd017864
19 https://doi.org/10.1080/00401706.1974.10489231
20 https://doi.org/10.1093/bioinformatics/btp630
21 https://doi.org/10.1093/bioinformatics/btq323
22 https://doi.org/10.1104/pp.109.146670
23 https://doi.org/10.1111/j.1467-9868.2010.00740.x
24 https://doi.org/10.1111/j.1469-8137.2010.03626.x
25 https://doi.org/10.1214/aoms/1177706647
26 https://doi.org/10.1371/journal.pone.0003259
27 schema:datePublished 2017
28 schema:datePublishedReg 2017-01-01
29 schema:description Metabolomics is a proven tool to obtain information about differences in food stuffs and to select biochemical markers for sensory quality of food products. A valuable application of untargeted metabolomics is the selection of metabolites that are (highly) predictive for sensory or phenotypical traits for use as (bio) markers. This chapter demonstrates how to robustly select key metabolites and evaluate their predictive properties. The proposed approach constrains the number of selected metabolites, searching for an optimal number of predictive metabolites by cross-validation. This mitigates the problem of selection of spurious metabolites. It also enables straightforward use of linear regression. In the present implementation simple forward selection is used. In concert with a second cross-validation to assess the predictive power of the selected set of metabolites, the proposed method involves two leave-one-out cross-validations and will be referred to as LOO2CV. In the second leave-one-out cross-validation a multitude of regression models is generated. This offers additional information that is potentially useful for selection of key metabolites in the spirit of stability selection. The proposed LOO2CV approach is illustrated with sensory and large-scale metabolomics data from a set of 76 different cocoa liquors. The proposed approach is compared with conventional stepwise regression and stepwise regression in concert with cross-validation for evaluation of predictive power of the model.
30 schema:editor Nb7f9f37d4a5745e58b5b8278be353023
31 schema:genre chapter
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N95e32204e9024ec787dc5603c390a2b3
35 schema:name Robust and Confident Predictor Selection in Metabolomics
36 schema:pagination 239-257
37 schema:productId N09a3bf5b3a214bf0a136503aa166c6b9
38 N610a427785de49b8877da9ebfd955438
39 N703861474808457194262c6687c50962
40 schema:publisher Nb394cda8c3704d5f85c4298ae0d3a83b
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000605547
42 https://doi.org/10.1007/978-3-319-45809-0_13
43 schema:sdDatePublished 2019-04-15T14:04
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N9ff73f1b01084f729acf43f55f0edd5b
46 schema:url http://link.springer.com/10.1007/978-3-319-45809-0_13
47 sgo:license sg:explorer/license/
48 sgo:sdDataset chapters
49 rdf:type schema:Chapter
50 N09a3bf5b3a214bf0a136503aa166c6b9 schema:name doi
51 schema:value 10.1007/978-3-319-45809-0_13
52 rdf:type schema:PropertyValue
53 N1111f77286a84d8591d7162861276e2e schema:name Laboratory of Plant Physiology, Wageningen University
54 rdf:type schema:Organization
55 N1eb09982b63f4f2889228ce9237aef0a rdf:first sg:person.0770101362.75
56 rdf:rest Na74dfc9089e34dbbafee7b63e8c42b13
57 N2c8729ca78ef40f28c30b34258e0c7f5 schema:name Nestle Research Center
58 rdf:type schema:Organization
59 N358c3e6d22b0490984dea79310681a01 schema:affiliation N54158ac5dd134dd0a70b7d45f68621f6
60 schema:familyName Jwanro
61 schema:givenName H.
62 rdf:type schema:Person
63 N3d9f68f2e6ad489b9d68ff5641da9b23 schema:affiliation N2c8729ca78ef40f28c30b34258e0c7f5
64 schema:familyName Spadone
65 schema:givenName J. C.
66 rdf:type schema:Person
67 N4b92bce09b474904aee3deed912d8a3a rdf:first sg:person.01366416351.05
68 rdf:rest Nbff84113bd8941aba3bdc539b295dbaf
69 N54158ac5dd134dd0a70b7d45f68621f6 schema:name Laboratory of Plant Physiology, Wageningen University
70 rdf:type schema:Organization
71 N610a427785de49b8877da9ebfd955438 schema:name dimensions_id
72 schema:value pub.1000605547
73 rdf:type schema:PropertyValue
74 N703861474808457194262c6687c50962 schema:name readcube_id
75 schema:value 02e226a6958faab112a93cd3540b845b2d8632373a9b4150dc6bd582d0e174d6
76 rdf:type schema:PropertyValue
77 N7b5a38e541a04bca815b5fadfcfe88e2 rdf:first sg:person.01262330345.72
78 rdf:rest N989f18bc1a444450bb5581cc5358c372
79 N83fbc7b1569b4ee1897e73f98dcc18f1 rdf:first Nd310abe589914a78acc7a5563879d031
80 rdf:rest rdf:nil
81 N95e32204e9024ec787dc5603c390a2b3 schema:isbn 978-3-319-45807-6
82 978-3-319-45809-0
83 schema:name Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry
84 rdf:type schema:Book
85 N989f18bc1a444450bb5581cc5358c372 rdf:first N3d9f68f2e6ad489b9d68ff5641da9b23
86 rdf:rest Na55a992e46994b2ba070af210bbc85b8
87 N9ff73f1b01084f729acf43f55f0edd5b schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Na55a992e46994b2ba070af210bbc85b8 rdf:first sg:person.0650756633.82
90 rdf:rest rdf:nil
91 Na74dfc9089e34dbbafee7b63e8c42b13 rdf:first sg:person.0702632255.66
92 rdf:rest Nf5bee3fddda647ffab8c9d820d0afb8c
93 Nb394cda8c3704d5f85c4298ae0d3a83b schema:location Cham
94 schema:name Springer International Publishing
95 rdf:type schema:Organisation
96 Nb7f9f37d4a5745e58b5b8278be353023 rdf:first Nd2dcbe3a62d044598e5b743a799bd0b7
97 rdf:rest N83fbc7b1569b4ee1897e73f98dcc18f1
98 Nbff84113bd8941aba3bdc539b295dbaf rdf:first sg:person.0704576323.20
99 rdf:rest Nd65f339a63f14ab2a4a1d5092ae4750a
100 Nd2dcbe3a62d044598e5b743a799bd0b7 schema:familyName Datta
101 schema:givenName Susmita
102 rdf:type schema:Person
103 Nd310abe589914a78acc7a5563879d031 schema:familyName Mertens
104 schema:givenName Bart J. A.
105 rdf:type schema:Person
106 Nd65f339a63f14ab2a4a1d5092ae4750a rdf:first N358c3e6d22b0490984dea79310681a01
107 rdf:rest N7b5a38e541a04bca815b5fadfcfe88e2
108 Nf5bee3fddda647ffab8c9d820d0afb8c rdf:first sg:person.014575024362.22
109 rdf:rest N4b92bce09b474904aee3deed912d8a3a
110 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
111 schema:name Mathematical Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
114 schema:name Statistics
115 rdf:type schema:DefinedTerm
116 sg:person.01262330345.72 schema:affiliation N1111f77286a84d8591d7162861276e2e
117 schema:familyName Crouzillat
118 schema:givenName D.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262330345.72
120 rdf:type schema:Person
121 sg:person.01366416351.05 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
122 schema:familyName Mumm
123 schema:givenName Roland
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366416351.05
125 rdf:type schema:Person
126 sg:person.014575024362.22 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
127 schema:familyName de Vos
128 schema:givenName Ric C. H.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014575024362.22
130 rdf:type schema:Person
131 sg:person.0650756633.82 schema:affiliation https://www.grid.ac/institutes/grid.450196.f
132 schema:familyName van Eeuwijk
133 schema:givenName F. A.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650756633.82
135 rdf:type schema:Person
136 sg:person.0702632255.66 schema:affiliation https://www.grid.ac/institutes/grid.450196.f
137 schema:familyName Engel
138 schema:givenName B.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702632255.66
140 rdf:type schema:Person
141 sg:person.0704576323.20 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
142 schema:familyName Hall
143 schema:givenName Robert D.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704576323.20
145 rdf:type schema:Person
146 sg:person.0770101362.75 schema:affiliation https://www.grid.ac/institutes/grid.450196.f
147 schema:familyName Hageman
148 schema:givenName J. A.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770101362.75
150 rdf:type schema:Person
151 sg:pub.10.1007/978-1-4899-4541-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705929
152 https://doi.org/10.1007/978-1-4899-4541-9
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s10681-011-0374-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003233530
155 https://doi.org/10.1007/s10681-011-0374-5
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s11306-007-0099-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022973183
158 https://doi.org/10.1007/s11306-007-0099-6
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s11306-011-0368-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042363301
161 https://doi.org/10.1007/s11306-011-0368-2
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/ng1815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033471111
164 https://doi.org/10.1038/ng1815
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nprot.2007.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029308877
167 https://doi.org/10.1038/nprot.2007.95
168 rdf:type schema:CreativeWork
169 https://app.dimensions.ai/details/publication/pub.1109705929 schema:CreativeWork
170 https://doi.org/10.1002/cem.782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033486944
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.aca.2007.04.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051480721
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.aca.2011.01.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003104353
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.procbio.2013.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012093321
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.trac.2011.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001769868
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1021/jf072990e schema:sameAs https://app.dimensions.ai/details/publication/pub.1055907560
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1021/jf901673d schema:sameAs https://app.dimensions.ai/details/publication/pub.1055926835
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1029/2012jd017864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000021919
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1080/00401706.1974.10489231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058284719
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1093/bioinformatics/btp630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008704456
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1093/bioinformatics/btq323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028368975
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1104/pp.109.146670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030411441
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1111/j.1467-9868.2010.00740.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000696823
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1111/j.1469-8137.2010.03626.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035715752
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1214/aoms/1177706647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010635193
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1371/journal.pone.0003259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009206578
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.450196.f schema:alternateName Netherlands Metabolomics Centre
203 schema:name Biometris-Applied Statistics, Wageningen University
204 Centre for BioSystems Genomics
205 Netherlands Consortium for Systems Biology
206 Netherlands Metabolomics Centre
207 rdf:type schema:Organization
208 https://www.grid.ac/institutes/grid.4818.5 schema:alternateName Wageningen University & Research
209 schema:name Centre for BioSystems Genomics
210 Netherlands Consortium for Systems Biology
211 Netherlands Metabolomics Centre
212 Plant Research International
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...