From Planning to Operation: Wind Power Forecasting Model for New Offshore Wind Farms View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

Melih Kurt , Jan Dobschinski , Bernhard Lange , Arne Wessel

ABSTRACT

Compared to the onshore, the offshore wind farms have higher capacity factors. These high-capacity factors of the offshore wind farms and different wind conditions on the sea require new innovations to ensure a secure electricity grid. Wind power forecasting is indispensable to improve both the penetration of the wind energy in the energy mix and the economical and technical integration of a large share of the wind energy. This study aims to represent a roadmap to develop wind power forecasting models for new offshore wind farms, for which no or limited power data are available. It investigates the development of wind power prediction quality of new offshore wind farms from planning to operation. This investigation represents improvement of forecast models for the first German offshore wind farm “alpha ventus.” The work is carried out with measured data from meteorological measurement mast Fino1, measured power from “alpha ventus,” and numerical weather predictions (NWP) from German Weather Service (DWD). Briefly summarized, this study aims to investigate development of forecast models for new offshore wind farms and to research reduction of prediction error via available historical data. More... »

PAGES

119-128

Book

TITLE

Towards 100% Renewable Energy

ISBN

978-3-319-45658-4
978-3-319-45659-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-45659-1_11

DOI

http://dx.doi.org/10.1007/978-3-319-45659-1_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083914089


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Fraunhofer Institute for Wind Energy and Energy System Technology", 
          "id": "https://www.grid.ac/institutes/grid.8440.8", 
          "name": [
            "Energy Economy and Grid Operation Fraunhofer IWES Kassel Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurt", 
        "givenName": "Melih", 
        "id": "sg:person.010266112266.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010266112266.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fraunhofer Institute for Wind Energy and Energy System Technology", 
          "id": "https://www.grid.ac/institutes/grid.8440.8", 
          "name": [
            "Energy Economy and Grid Operation Fraunhofer IWES Kassel Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dobschinski", 
        "givenName": "Jan", 
        "id": "sg:person.016660043215.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016660043215.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fraunhofer Institute for Wind Energy and Energy System Technology", 
          "id": "https://www.grid.ac/institutes/grid.8440.8", 
          "name": [
            "Energy Economy and Grid Operation Fraunhofer IWES Kassel Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lange", 
        "givenName": "Bernhard", 
        "id": "sg:person.014130052775.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014130052775.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fraunhofer Institute for Wind Energy and Energy System Technology", 
          "id": "https://www.grid.ac/institutes/grid.8440.8", 
          "name": [
            "Energy Economy and Grid Operation Fraunhofer IWES Kassel Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wessel", 
        "givenName": "Arne", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0167-6105(98)00192-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044832684"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "Compared to the onshore, the offshore wind farms have higher capacity factors. These high-capacity factors of the offshore wind farms and different wind conditions on the sea require new innovations to ensure a secure electricity grid. Wind power forecasting is indispensable to improve both the penetration of the wind energy in the energy mix and the economical and technical integration of a large share of the wind energy. This study aims to represent a roadmap to develop wind power forecasting models for new offshore wind farms, for which no or limited power data are available. It investigates the development of wind power prediction quality of new offshore wind farms from planning to operation. This investigation represents improvement of forecast models for the first German offshore wind farm \u201calpha ventus.\u201d The work is carried out with measured data from meteorological measurement mast Fino1, measured power from \u201calpha ventus,\u201d and numerical weather predictions (NWP) from German Weather Service (DWD). Briefly summarized, this study aims to investigate development of forecast models for new offshore wind farms and to research reduction of prediction error via available historical data.", 
    "editor": [
      {
        "familyName": "Uyar", 
        "givenName": "Tanay Sidki", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-45659-1_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-45658-4", 
        "978-3-319-45659-1"
      ], 
      "name": "Towards 100% Renewable Energy", 
      "type": "Book"
    }, 
    "name": "From Planning to Operation: Wind Power Forecasting Model for New Offshore Wind Farms", 
    "pagination": "119-128", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-45659-1_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e14ccbcac40f0c2c964fc8dd9f6a6842c70e2fb0123a06f537e76231a392b3ea"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083914089"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-45659-1_11", 
      "https://app.dimensions.ai/details/publication/pub.1083914089"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000331.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-45659-1_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45659-1_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45659-1_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45659-1_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45659-1_11'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      23 PREDICATES      28 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-45659-1_11 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N06fc50705f97416990ec0c03327239bc
4 schema:citation https://doi.org/10.1016/s0167-6105(98)00192-5
5 schema:datePublished 2017
6 schema:datePublishedReg 2017-01-01
7 schema:description Compared to the onshore, the offshore wind farms have higher capacity factors. These high-capacity factors of the offshore wind farms and different wind conditions on the sea require new innovations to ensure a secure electricity grid. Wind power forecasting is indispensable to improve both the penetration of the wind energy in the energy mix and the economical and technical integration of a large share of the wind energy. This study aims to represent a roadmap to develop wind power forecasting models for new offshore wind farms, for which no or limited power data are available. It investigates the development of wind power prediction quality of new offshore wind farms from planning to operation. This investigation represents improvement of forecast models for the first German offshore wind farm “alpha ventus.” The work is carried out with measured data from meteorological measurement mast Fino1, measured power from “alpha ventus,” and numerical weather predictions (NWP) from German Weather Service (DWD). Briefly summarized, this study aims to investigate development of forecast models for new offshore wind farms and to research reduction of prediction error via available historical data.
8 schema:editor Nb88ccbf994134f8daadc799c53b593e6
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Nf03761383b654d7d81977901e583541f
13 schema:name From Planning to Operation: Wind Power Forecasting Model for New Offshore Wind Farms
14 schema:pagination 119-128
15 schema:productId N04b26671f2f34757a0a9a6fa32d0d58a
16 N3bf50c73b4c6477c89b1a9879fd2cc3c
17 N41a5b1099e9e4f93a46593ffed15e395
18 schema:publisher Nda07241c725249dfa3f88d5e7ac3c072
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083914089
20 https://doi.org/10.1007/978-3-319-45659-1_11
21 schema:sdDatePublished 2019-04-15T16:26
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N373f98047c8e495394a9292207960fc1
24 schema:url http://link.springer.com/10.1007/978-3-319-45659-1_11
25 sgo:license sg:explorer/license/
26 sgo:sdDataset chapters
27 rdf:type schema:Chapter
28 N04b26671f2f34757a0a9a6fa32d0d58a schema:name readcube_id
29 schema:value e14ccbcac40f0c2c964fc8dd9f6a6842c70e2fb0123a06f537e76231a392b3ea
30 rdf:type schema:PropertyValue
31 N06fc50705f97416990ec0c03327239bc rdf:first sg:person.010266112266.68
32 rdf:rest Nc8921da6dc604bdaa5a0bdcf1630bef1
33 N1bef1c0256944716a7e424205d647a09 schema:familyName Uyar
34 schema:givenName Tanay Sidki
35 rdf:type schema:Person
36 N26af0c8a685e4cd7a412375fd9bdf85f rdf:first sg:person.014130052775.14
37 rdf:rest Na5112985ac864bb9beefe206b4569d13
38 N373f98047c8e495394a9292207960fc1 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N3bf50c73b4c6477c89b1a9879fd2cc3c schema:name dimensions_id
41 schema:value pub.1083914089
42 rdf:type schema:PropertyValue
43 N41a5b1099e9e4f93a46593ffed15e395 schema:name doi
44 schema:value 10.1007/978-3-319-45659-1_11
45 rdf:type schema:PropertyValue
46 Na5112985ac864bb9beefe206b4569d13 rdf:first Nded3ccbd90ff42bd912365b5da9fe10e
47 rdf:rest rdf:nil
48 Nb88ccbf994134f8daadc799c53b593e6 rdf:first N1bef1c0256944716a7e424205d647a09
49 rdf:rest rdf:nil
50 Nc8921da6dc604bdaa5a0bdcf1630bef1 rdf:first sg:person.016660043215.94
51 rdf:rest N26af0c8a685e4cd7a412375fd9bdf85f
52 Nda07241c725249dfa3f88d5e7ac3c072 schema:location Cham
53 schema:name Springer International Publishing
54 rdf:type schema:Organisation
55 Nded3ccbd90ff42bd912365b5da9fe10e schema:affiliation https://www.grid.ac/institutes/grid.8440.8
56 schema:familyName Wessel
57 schema:givenName Arne
58 rdf:type schema:Person
59 Nf03761383b654d7d81977901e583541f schema:isbn 978-3-319-45658-4
60 978-3-319-45659-1
61 schema:name Towards 100% Renewable Energy
62 rdf:type schema:Book
63 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
64 schema:name Earth Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
67 schema:name Atmospheric Sciences
68 rdf:type schema:DefinedTerm
69 sg:person.010266112266.68 schema:affiliation https://www.grid.ac/institutes/grid.8440.8
70 schema:familyName Kurt
71 schema:givenName Melih
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010266112266.68
73 rdf:type schema:Person
74 sg:person.014130052775.14 schema:affiliation https://www.grid.ac/institutes/grid.8440.8
75 schema:familyName Lange
76 schema:givenName Bernhard
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014130052775.14
78 rdf:type schema:Person
79 sg:person.016660043215.94 schema:affiliation https://www.grid.ac/institutes/grid.8440.8
80 schema:familyName Dobschinski
81 schema:givenName Jan
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016660043215.94
83 rdf:type schema:Person
84 https://doi.org/10.1016/s0167-6105(98)00192-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044832684
85 rdf:type schema:CreativeWork
86 https://www.grid.ac/institutes/grid.8440.8 schema:alternateName Fraunhofer Institute for Wind Energy and Energy System Technology
87 schema:name Energy Economy and Grid Operation Fraunhofer IWES Kassel Germany
88 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...