Scalable Reasoning by Abstraction Beyond DL-Lite View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-08-26

AUTHORS

Birte Glimm , Yevgeny Kazakov , Trung-Kien Tran

ABSTRACT

Recently, it has been shown that ontologies with large datasets can be efficiently materialized by a so-called abstraction refinement technique. The technique consists of the abstraction phase, which partitions individuals into equivalence classes, and the refinement phase, which re-partitions individuals based on entailments for the representative individual of each equivalence class. In this paper, we present an abstraction-based approach for materialization in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {DL\text{- }Lite}$$\end{document}, i.e. we show that materialization for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {DL\text{- }Lite}$$\end{document} does not require the refinement phase. We further show that the approach is sound and complete even when adding disjunctions and nominals to the language. The proposed technique allows not only for faster materialization and classification of the ontologies, but also for efficient consistency checking; a step that is often omitted by practical approaches based on query rewriting. A preliminary empirical evaluation on both real-life and benchmark ontologies demonstrates that the approach can handle ontologies with large datasets efficiently. More... »

PAGES

77-93

Book

TITLE

Web Reasoning and Rule Systems

ISBN

978-3-319-45275-3
978-3-319-45276-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-45276-0_7

DOI

http://dx.doi.org/10.1007/978-3-319-45276-0_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018258250


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ulm, Ulm, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "University of Ulm, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glimm", 
        "givenName": "Birte", 
        "id": "sg:person.015234565343.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015234565343.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm, Ulm, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "University of Ulm, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kazakov", 
        "givenName": "Yevgeny", 
        "id": "sg:person.013173133226.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013173133226.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm, Ulm, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "University of Ulm, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tran", 
        "givenName": "Trung-Kien", 
        "id": "sg:person.011420505203.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011420505203.46"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-08-26", 
    "datePublishedReg": "2016-08-26", 
    "description": "Recently, it has been shown that ontologies with large datasets can be efficiently materialized by a so-called abstraction refinement technique. The technique consists of the abstraction phase, which partitions individuals into equivalence classes, and the refinement phase, which re-partitions individuals based on entailments for the representative individual of each equivalence class. In this paper, we present an abstraction-based approach for materialization in \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathrm {DL\\text{- }Lite}$$\\end{document}, i.e. we show that materialization for \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathrm {DL\\text{- }Lite}$$\\end{document} does not require the refinement phase. We further show that the approach is sound and complete even when adding disjunctions and nominals to the language. The proposed technique allows not only for faster materialization and classification of the ontologies, but also for efficient consistency checking; a step that is often omitted by practical approaches based on query rewriting. A preliminary empirical evaluation on both real-life and benchmark ontologies demonstrates that the approach can handle ontologies with large datasets efficiently.", 
    "editor": [
      {
        "familyName": "Ortiz", 
        "givenName": "Magdalena", 
        "type": "Person"
      }, 
      {
        "familyName": "Schlobach", 
        "givenName": "Stefan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-45276-0_7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-45275-3", 
        "978-3-319-45276-0"
      ], 
      "name": "Web Reasoning and Rule Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "large datasets", 
      "refinement phase", 
      "abstraction refinement technique", 
      "abstraction-based approach", 
      "preliminary empirical evaluation", 
      "scalable reasoning", 
      "benchmark ontologies", 
      "abstraction phase", 
      "efficient consistency", 
      "DL-Lite", 
      "empirical evaluation", 
      "ontology", 
      "dataset", 
      "materialization", 
      "refinement technique", 
      "equivalence classes", 
      "practical approach", 
      "queries", 
      "technique", 
      "reasoning", 
      "language", 
      "entailment", 
      "classification", 
      "class", 
      "consistency", 
      "step", 
      "disjunction", 
      "representative individuals", 
      "evaluation", 
      "phase", 
      "individuals", 
      "nominals", 
      "approach", 
      "paper"
    ], 
    "name": "Scalable Reasoning by Abstraction Beyond DL-Lite", 
    "pagination": "77-93", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018258250"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-45276-0_7"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-45276-0_7", 
      "https://app.dimensions.ai/details/publication/pub.1018258250"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_376.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-45276-0_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45276-0_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45276-0_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45276-0_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45276-0_7'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      23 PREDICATES      59 URIs      52 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-45276-0_7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N5cdfddd45c3246f0ab40377dab7dbb00
4 schema:datePublished 2016-08-26
5 schema:datePublishedReg 2016-08-26
6 schema:description Recently, it has been shown that ontologies with large datasets can be efficiently materialized by a so-called abstraction refinement technique. The technique consists of the abstraction phase, which partitions individuals into equivalence classes, and the refinement phase, which re-partitions individuals based on entailments for the representative individual of each equivalence class. In this paper, we present an abstraction-based approach for materialization in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {DL\text{- }Lite}$$\end{document}, i.e. we show that materialization for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {DL\text{- }Lite}$$\end{document} does not require the refinement phase. We further show that the approach is sound and complete even when adding disjunctions and nominals to the language. The proposed technique allows not only for faster materialization and classification of the ontologies, but also for efficient consistency checking; a step that is often omitted by practical approaches based on query rewriting. A preliminary empirical evaluation on both real-life and benchmark ontologies demonstrates that the approach can handle ontologies with large datasets efficiently.
7 schema:editor N3cb7029e66e34bb4807d722053a8ffb6
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ne3666b645b014d74bac24abb71055cf7
12 schema:keywords DL-Lite
13 abstraction phase
14 abstraction refinement technique
15 abstraction-based approach
16 approach
17 benchmark ontologies
18 class
19 classification
20 consistency
21 dataset
22 disjunction
23 efficient consistency
24 empirical evaluation
25 entailment
26 equivalence classes
27 evaluation
28 individuals
29 language
30 large datasets
31 materialization
32 nominals
33 ontology
34 paper
35 phase
36 practical approach
37 preliminary empirical evaluation
38 queries
39 reasoning
40 refinement phase
41 refinement technique
42 representative individuals
43 scalable reasoning
44 step
45 technique
46 schema:name Scalable Reasoning by Abstraction Beyond DL-Lite
47 schema:pagination 77-93
48 schema:productId N63c3a9ba22c14d14b908fcbab640796f
49 Nfc39bd98bd3e471d9d7aadffa9d97e5f
50 schema:publisher N9fc0da7843624b19bd48cd62e9aa47ae
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018258250
52 https://doi.org/10.1007/978-3-319-45276-0_7
53 schema:sdDatePublished 2022-06-01T22:33
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N2184fb8e65a542ada07fbc73f97711cb
56 schema:url https://doi.org/10.1007/978-3-319-45276-0_7
57 sgo:license sg:explorer/license/
58 sgo:sdDataset chapters
59 rdf:type schema:Chapter
60 N15b6bdef824b4b118618cdbb73986971 schema:familyName Schlobach
61 schema:givenName Stefan
62 rdf:type schema:Person
63 N2184fb8e65a542ada07fbc73f97711cb schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N3cb7029e66e34bb4807d722053a8ffb6 rdf:first Nf2cdd9dbc9a847e1ab252e15bf5ee426
66 rdf:rest Nfe438792d22143cbb2bc67d68da788e2
67 N43202ea473944f9a91af497abc9681fc rdf:first sg:person.013173133226.01
68 rdf:rest N6e958adf025141bf8083bd1d35562f2c
69 N5cdfddd45c3246f0ab40377dab7dbb00 rdf:first sg:person.015234565343.35
70 rdf:rest N43202ea473944f9a91af497abc9681fc
71 N63c3a9ba22c14d14b908fcbab640796f schema:name dimensions_id
72 schema:value pub.1018258250
73 rdf:type schema:PropertyValue
74 N6e958adf025141bf8083bd1d35562f2c rdf:first sg:person.011420505203.46
75 rdf:rest rdf:nil
76 N9fc0da7843624b19bd48cd62e9aa47ae schema:name Springer Nature
77 rdf:type schema:Organisation
78 Ne3666b645b014d74bac24abb71055cf7 schema:isbn 978-3-319-45275-3
79 978-3-319-45276-0
80 schema:name Web Reasoning and Rule Systems
81 rdf:type schema:Book
82 Nf2cdd9dbc9a847e1ab252e15bf5ee426 schema:familyName Ortiz
83 schema:givenName Magdalena
84 rdf:type schema:Person
85 Nfc39bd98bd3e471d9d7aadffa9d97e5f schema:name doi
86 schema:value 10.1007/978-3-319-45276-0_7
87 rdf:type schema:PropertyValue
88 Nfe438792d22143cbb2bc67d68da788e2 rdf:first N15b6bdef824b4b118618cdbb73986971
89 rdf:rest rdf:nil
90 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
91 schema:name Information and Computing Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
94 schema:name Artificial Intelligence and Image Processing
95 rdf:type schema:DefinedTerm
96 sg:person.011420505203.46 schema:affiliation grid-institutes:grid.6582.9
97 schema:familyName Tran
98 schema:givenName Trung-Kien
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011420505203.46
100 rdf:type schema:Person
101 sg:person.013173133226.01 schema:affiliation grid-institutes:grid.6582.9
102 schema:familyName Kazakov
103 schema:givenName Yevgeny
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013173133226.01
105 rdf:type schema:Person
106 sg:person.015234565343.35 schema:affiliation grid-institutes:grid.6582.9
107 schema:familyName Glimm
108 schema:givenName Birte
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015234565343.35
110 rdf:type schema:Person
111 grid-institutes:grid.6582.9 schema:alternateName University of Ulm, Ulm, Germany
112 schema:name University of Ulm, Ulm, Germany
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...