Coates–Wiles Homomorphisms and Iwasawa Cohomology for Lubin–Tate Extensions View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2016

AUTHORS

Peter Schneider , Otmar Venjakob

ABSTRACT

For the p-cyclotomic tower of \(\mathbb {Q}_p\) Fontaine established a description of local Iwasawa cohomology with coefficients in a local Galois representation V in terms of the \(\psi \)-operator acting on the attached etale \((\varphi ,\Gamma )\)-module D(V). In this chapter we generalize Fontaine’s result to the case of arbitrary Lubin–Tate towers \(L_\infty \) over finite extensions L of \(\mathbb {Q}_p\) by using the Kisin–Ren/Fontaine equivalence of categories between Galois representations and \((\varphi _L,\Gamma _L)\)-modules and extending parts of [20, 33]. Moreover, we prove a kind of explicit reciprocity law which calculates the Kummer map over \(L_\infty \) for the multiplicative group twisted with the dual of the Tate module T of the Lubin–Tate formal group in terms of Coleman power series and the attached \((\varphi _L,\Gamma _L)\)-module. The proof is based on a generalized Schmid–Witt residue formula. Finally, we extend the explicit reciprocity law of Bloch and Kato [3] Theorem 2.1 to our situation expressing the Bloch–Kato exponential map for \(L(\chi _{LT}^r)\) in terms of generalized Coates–Wiles homomorphisms, where the Lubin–Tate character \(\chi _{LT}\) describes the Galois action on T. More... »

PAGES

401-468

Book

TITLE

Elliptic Curves, Modular Forms and Iwasawa Theory

ISBN

978-3-319-45031-5
978-3-319-45032-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-45032-2_12

DOI

http://dx.doi.org/10.1007/978-3-319-45032-2_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009296710


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Mathematisches Institut Universit\u00e4t M\u00fcnster M\u00fcnster Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schneider", 
        "givenName": "Peter", 
        "id": "sg:person.01342215625.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342215625.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Mathematisches Institut Universit\u00e4t Heidelberg Heidelberg Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Venjakob", 
        "givenName": "Otmar", 
        "id": "sg:person.014364500011.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014364500011.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0084729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003454617", 
          "https://doi.org/10.1007/bfb0084729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-33069-1_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007701100", 
          "https://doi.org/10.1007/978-3-540-33069-1_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01390028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008216986", 
          "https://doi.org/10.1007/bf01390028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1990.411.171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018988803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-9945-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019650109", 
          "https://doi.org/10.1007/978-1-4612-9945-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-9945-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019650109", 
          "https://doi.org/10.1007/978-1-4612-9945-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01231756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022511296", 
          "https://doi.org/10.1007/bf01231756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0058395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026195203", 
          "https://doi.org/10.1007/bfb0058395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0058395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026195203", 
          "https://doi.org/10.1007/bfb0058395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1446788700011459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026874286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1446788700011459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026874286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1028066486", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-8638-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028066486", 
          "https://doi.org/10.1007/978-1-4419-8638-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-8638-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028066486", 
          "https://doi.org/10.1007/978-1-4419-8638-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1029494490", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1029494490", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1937.176.126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032977751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4574-8_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034453267", 
          "https://doi.org/10.1007/978-0-8176-4574-8_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0894-0347-99-00281-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044592433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1047375467", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-37889-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047375467", 
          "https://doi.org/10.1007/978-3-540-37889-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-37889-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047375467", 
          "https://doi.org/10.1007/978-3-540-37889-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1474748002000099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054938086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-00-10422-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064415128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/ant.2013.7.2545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069059053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/121003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069397475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1969603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069674977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1971143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069676442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/jtnb.514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073141614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24033/bsmf.2337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083661373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/chel/375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098755902"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "For the p-cyclotomic tower of \\(\\mathbb {Q}_p\\) Fontaine established a description of local Iwasawa cohomology with coefficients in a local Galois representation V in terms of the \\(\\psi \\)-operator acting on the attached etale \\((\\varphi ,\\Gamma )\\)-module D(V). In this chapter we generalize Fontaine\u2019s result to the case of arbitrary Lubin\u2013Tate towers \\(L_\\infty \\) over finite extensions L of \\(\\mathbb {Q}_p\\) by using the Kisin\u2013Ren/Fontaine equivalence of categories between Galois representations and \\((\\varphi _L,\\Gamma _L)\\)-modules and extending parts of [20, 33]. Moreover, we prove a kind of explicit reciprocity law which calculates the Kummer map over \\(L_\\infty \\) for the multiplicative group twisted with the dual of the Tate module T of the Lubin\u2013Tate formal group in terms of Coleman power series and the attached \\((\\varphi _L,\\Gamma _L)\\)-module. The proof is based on a generalized Schmid\u2013Witt residue formula. Finally, we extend the explicit reciprocity law of Bloch and Kato [3] Theorem 2.1 to our situation expressing the Bloch\u2013Kato exponential map for \\(L(\\chi _{LT}^r)\\) in terms of generalized Coates\u2013Wiles homomorphisms, where the Lubin\u2013Tate character \\(\\chi _{LT}\\) describes the Galois action on T.", 
    "editor": [
      {
        "familyName": "Loeffler", 
        "givenName": "David", 
        "type": "Person"
      }, 
      {
        "familyName": "Zerbes", 
        "givenName": "Sarah Livia", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-45032-2_12", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-45031-5", 
        "978-3-319-45032-2"
      ], 
      "name": "Elliptic Curves, Modular Forms and Iwasawa Theory", 
      "type": "Book"
    }, 
    "name": "Coates\u2013Wiles Homomorphisms and Iwasawa Cohomology for Lubin\u2013Tate Extensions", 
    "pagination": "401-468", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-45032-2_12"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2c4950b81a5f038b3dd911ff5a362977395d90934bedd6a742415b36edcbb631"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009296710"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-45032-2_12", 
      "https://app.dimensions.ai/details/publication/pub.1009296710"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000307.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-45032-2_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45032-2_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45032-2_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45032-2_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-45032-2_12'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      23 PREDICATES      52 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-45032-2_12 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N647af8067ee84cf7a83b9cad8039a7fc
4 schema:citation sg:pub.10.1007/978-0-8176-4574-8_9
5 sg:pub.10.1007/978-1-4419-8638-2
6 sg:pub.10.1007/978-1-4612-9945-5
7 sg:pub.10.1007/978-3-540-33069-1_1
8 sg:pub.10.1007/978-3-540-37889-1
9 sg:pub.10.1007/bf01231756
10 sg:pub.10.1007/bf01390028
11 sg:pub.10.1007/bfb0058395
12 sg:pub.10.1007/bfb0084729
13 https://app.dimensions.ai/details/publication/pub.1028066486
14 https://app.dimensions.ai/details/publication/pub.1029494490
15 https://app.dimensions.ai/details/publication/pub.1047375467
16 https://doi.org/10.1017/s1446788700011459
17 https://doi.org/10.1017/s1474748002000099
18 https://doi.org/10.1090/chel/375
19 https://doi.org/10.1090/s0894-0347-99-00281-7
20 https://doi.org/10.1215/s0012-7094-00-10422-x
21 https://doi.org/10.1515/crll.1937.176.126
22 https://doi.org/10.1515/crll.1990.411.171
23 https://doi.org/10.2140/ant.2013.7.2545
24 https://doi.org/10.2307/121003
25 https://doi.org/10.2307/1969603
26 https://doi.org/10.2307/1971143
27 https://doi.org/10.24033/bsmf.2337
28 https://doi.org/10.5802/jtnb.514
29 schema:datePublished 2016
30 schema:datePublishedReg 2016-01-01
31 schema:description For the p-cyclotomic tower of \(\mathbb {Q}_p\) Fontaine established a description of local Iwasawa cohomology with coefficients in a local Galois representation V in terms of the \(\psi \)-operator acting on the attached etale \((\varphi ,\Gamma )\)-module D(V). In this chapter we generalize Fontaine’s result to the case of arbitrary Lubin–Tate towers \(L_\infty \) over finite extensions L of \(\mathbb {Q}_p\) by using the Kisin–Ren/Fontaine equivalence of categories between Galois representations and \((\varphi _L,\Gamma _L)\)-modules and extending parts of [20, 33]. Moreover, we prove a kind of explicit reciprocity law which calculates the Kummer map over \(L_\infty \) for the multiplicative group twisted with the dual of the Tate module T of the Lubin–Tate formal group in terms of Coleman power series and the attached \((\varphi _L,\Gamma _L)\)-module. The proof is based on a generalized Schmid–Witt residue formula. Finally, we extend the explicit reciprocity law of Bloch and Kato [3] Theorem 2.1 to our situation expressing the Bloch–Kato exponential map for \(L(\chi _{LT}^r)\) in terms of generalized Coates–Wiles homomorphisms, where the Lubin–Tate character \(\chi _{LT}\) describes the Galois action on T.
32 schema:editor N7410ae4e4e4f4d81a7848e636d15e4ec
33 schema:genre chapter
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf Nfa02d1df40ed494da41591d27aa2a84d
37 schema:name Coates–Wiles Homomorphisms and Iwasawa Cohomology for Lubin–Tate Extensions
38 schema:pagination 401-468
39 schema:productId N3d73e5e458344c07a507606fea3fa2de
40 N9144a8efb2d847b28f981f6961dd9990
41 Nd6634b38623e4caba85f1e17ad61e5fd
42 schema:publisher N96de7add79744edc99a85b03f47e4c1b
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009296710
44 https://doi.org/10.1007/978-3-319-45032-2_12
45 schema:sdDatePublished 2019-04-15T17:21
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Ne9f65e0d28684e3593c6390a53868435
48 schema:url http://link.springer.com/10.1007/978-3-319-45032-2_12
49 sgo:license sg:explorer/license/
50 sgo:sdDataset chapters
51 rdf:type schema:Chapter
52 N0487f3460bf642bd9e3cefc62598f310 schema:name Mathematisches Institut Universität Heidelberg Heidelberg Germany
53 rdf:type schema:Organization
54 N2f453733316d4724b775a1f514790eda schema:name Mathematisches Institut Universität Münster Münster Germany
55 rdf:type schema:Organization
56 N3d73e5e458344c07a507606fea3fa2de schema:name readcube_id
57 schema:value 2c4950b81a5f038b3dd911ff5a362977395d90934bedd6a742415b36edcbb631
58 rdf:type schema:PropertyValue
59 N647af8067ee84cf7a83b9cad8039a7fc rdf:first sg:person.01342215625.25
60 rdf:rest N71a75340c6b147ed9edb983051763169
61 N692e1c19e05e440dbfeabd170ebeb6e9 schema:familyName Zerbes
62 schema:givenName Sarah Livia
63 rdf:type schema:Person
64 N71a75340c6b147ed9edb983051763169 rdf:first sg:person.014364500011.21
65 rdf:rest rdf:nil
66 N7410ae4e4e4f4d81a7848e636d15e4ec rdf:first N7bb00369eb944e708a55d59de451d09e
67 rdf:rest Ncae0aba78cd14c4d89c6867ba87f03aa
68 N7bb00369eb944e708a55d59de451d09e schema:familyName Loeffler
69 schema:givenName David
70 rdf:type schema:Person
71 N9144a8efb2d847b28f981f6961dd9990 schema:name doi
72 schema:value 10.1007/978-3-319-45032-2_12
73 rdf:type schema:PropertyValue
74 N96de7add79744edc99a85b03f47e4c1b schema:location Cham
75 schema:name Springer International Publishing
76 rdf:type schema:Organisation
77 Ncae0aba78cd14c4d89c6867ba87f03aa rdf:first N692e1c19e05e440dbfeabd170ebeb6e9
78 rdf:rest rdf:nil
79 Nd6634b38623e4caba85f1e17ad61e5fd schema:name dimensions_id
80 schema:value pub.1009296710
81 rdf:type schema:PropertyValue
82 Ne9f65e0d28684e3593c6390a53868435 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Nfa02d1df40ed494da41591d27aa2a84d schema:isbn 978-3-319-45031-5
85 978-3-319-45032-2
86 schema:name Elliptic Curves, Modular Forms and Iwasawa Theory
87 rdf:type schema:Book
88 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
89 schema:name Mathematical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
92 schema:name Pure Mathematics
93 rdf:type schema:DefinedTerm
94 sg:person.01342215625.25 schema:affiliation N2f453733316d4724b775a1f514790eda
95 schema:familyName Schneider
96 schema:givenName Peter
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342215625.25
98 rdf:type schema:Person
99 sg:person.014364500011.21 schema:affiliation N0487f3460bf642bd9e3cefc62598f310
100 schema:familyName Venjakob
101 schema:givenName Otmar
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014364500011.21
103 rdf:type schema:Person
104 sg:pub.10.1007/978-0-8176-4574-8_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034453267
105 https://doi.org/10.1007/978-0-8176-4574-8_9
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/978-1-4419-8638-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028066486
108 https://doi.org/10.1007/978-1-4419-8638-2
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/978-1-4612-9945-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019650109
111 https://doi.org/10.1007/978-1-4612-9945-5
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/978-3-540-33069-1_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007701100
114 https://doi.org/10.1007/978-3-540-33069-1_1
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/978-3-540-37889-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047375467
117 https://doi.org/10.1007/978-3-540-37889-1
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf01231756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022511296
120 https://doi.org/10.1007/bf01231756
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/bf01390028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008216986
123 https://doi.org/10.1007/bf01390028
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/bfb0058395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026195203
126 https://doi.org/10.1007/bfb0058395
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/bfb0084729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003454617
129 https://doi.org/10.1007/bfb0084729
130 rdf:type schema:CreativeWork
131 https://app.dimensions.ai/details/publication/pub.1028066486 schema:CreativeWork
132 https://app.dimensions.ai/details/publication/pub.1029494490 schema:CreativeWork
133 https://app.dimensions.ai/details/publication/pub.1047375467 schema:CreativeWork
134 https://doi.org/10.1017/s1446788700011459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026874286
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1017/s1474748002000099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054938086
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1090/chel/375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098755902
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1090/s0894-0347-99-00281-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044592433
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1215/s0012-7094-00-10422-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1064415128
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1515/crll.1937.176.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032977751
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1515/crll.1990.411.171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018988803
147 rdf:type schema:CreativeWork
148 https://doi.org/10.2140/ant.2013.7.2545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069059053
149 rdf:type schema:CreativeWork
150 https://doi.org/10.2307/121003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069397475
151 rdf:type schema:CreativeWork
152 https://doi.org/10.2307/1969603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674977
153 rdf:type schema:CreativeWork
154 https://doi.org/10.2307/1971143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676442
155 rdf:type schema:CreativeWork
156 https://doi.org/10.24033/bsmf.2337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083661373
157 rdf:type schema:CreativeWork
158 https://doi.org/10.5802/jtnb.514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073141614
159 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...