Information Fusion for Improving Decision-Making in Big Data Applications View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Nayat Sanchez-Pi , Luis Martí , José Manuel Molina , Ana C. Bicharra García

ABSTRACT

The danger involved in oil and gas industry allied to, the not rare, world-spread accidents have promoted the concerns toward achieving and demonstrating good performance with regard to occupational, health and safety (OHS) issues. There are international OHS compliance policies that must be followed by any petroleum company to be able to operate. One of these policies is the register, at the spur of the moment, any anomaly that occurs during operation including environmental accidents, human accidents or, even, simply noncompliance behavior of the work force. In addition to register the anomaly, the entire process of analyzing, finding the root cause and solving the problem must get registered. As a consequence, an increasingly huge database has been created in many companies with these reports. The data may or may not be structured, but for sure is composed of different sources and types. For instance, whenever needed, data from the workforce will be registered side by side with data from the involved equipment. Human manipulation of this huge and diversified data is a difficult, or even impossible, task. We present a data fusion architecture coupled with a machine-learning layer for providing abstractions and inferences over the data. The idea is to prove that our approach allows analysts to infer the relevant root-cause-and-effect relations that underlie the domain. We developed a system according to our model and used with data from a petroleum company. In addition to prove the feasibility of our approach we have compared with state-of-the art data mining techniques. Results have shown the efficiency in terms of accuracy and recall of our approach. More... »

PAGES

171-188

Book

TITLE

Resource Management for Big Data Platforms

ISBN

978-3-319-44880-0
978-3-319-44881-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-44881-7_9

DOI

http://dx.doi.org/10.1007/978-3-319-44881-7_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011958498


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rio de Janeiro State University", 
          "id": "https://www.grid.ac/institutes/grid.412211.5", 
          "name": [
            "Institute of Mathematics and Statistics, Universidade do Estado do Rio de Janeiro"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanchez-Pi", 
        "givenName": "Nayat", 
        "id": "sg:person.07411775305.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07411775305.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fluminense Federal University", 
          "id": "https://www.grid.ac/institutes/grid.411173.1", 
          "name": [
            "Institute of Computing, Universidade Federal Fluminense"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mart\u00ed", 
        "givenName": "Luis", 
        "id": "sg:person.013310403353.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013310403353.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Computer Science Department, Universidad Carlos III de Madrid"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Molina", 
        "givenName": "Jos\u00e9 Manuel", 
        "id": "sg:person.010563353054.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010563353054.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fluminense Federal University", 
          "id": "https://www.grid.ac/institutes/grid.411173.1", 
          "name": [
            "Institute of Computing, Universidade Federal Fluminense"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda", 
        "givenName": "Ana C. Bicharra", 
        "id": "sg:person.07430767131.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07430767131.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.inffus.2009.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001730498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inffus.2009.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008311816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2012.10.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011412742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inffus.2005.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016780860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inffus.2005.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016780860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/342009.335372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025244221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-07767-3_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027794870", 
          "https://doi.org/10.1007/978-3-319-07767-3_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inffus.2005.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041107715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/846183.846197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041689350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-01854-6_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045774509", 
          "https://doi.org/10.1007/978-3-319-01854-6_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inffus.2009.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048670036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.554206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/69.846291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061213826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcst.2010.2062183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061572975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129065711002833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062899275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1518/001872095779049543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067596874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1518/001872095779049543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067596874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/acssc.1993.342520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093325119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icif.2005.1592050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093390060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icma.2007.4303855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093415289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icif.2010.5711859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093550268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icif.2002.1021189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093847881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/dfua.2003.1219950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094004181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icif.2002.1021205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094772448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icif.2007.4408022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094951146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/oceans.2004.1406451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094999374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icif.2010.5712116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095030223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icif.2002.1021139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095037157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icif.2005.1591935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095244224"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "The danger involved in oil and gas industry allied to, the not rare, world-spread accidents have promoted the concerns toward achieving and demonstrating good performance with regard to occupational, health and safety (OHS) issues. There are international OHS compliance policies that must be followed by any petroleum company to be able to operate. One of these policies is the register, at the spur of the moment, any anomaly that occurs during operation including environmental accidents, human accidents or, even, simply noncompliance behavior of the work force. In addition to register the anomaly, the entire process of analyzing, finding the root cause and solving the problem must get registered. As a consequence, an increasingly huge database has been created in many companies with these reports. The data may or may not be structured, but for sure is composed of different sources and types. For instance, whenever needed, data from the workforce will be registered side by side with data from the involved equipment. Human manipulation of this huge and diversified data is a difficult, or even impossible, task. We present a data fusion architecture coupled with a machine-learning layer for providing abstractions and inferences over the data. The idea is to prove that our approach allows analysts to infer the relevant root-cause-and-effect relations that underlie the domain. We developed a system according to our model and used with data from a petroleum company. In addition to prove the feasibility of our approach we have compared with state-of-the art data mining techniques. Results have shown the efficiency in terms of accuracy and recall of our approach.", 
    "editor": [
      {
        "familyName": "Pop", 
        "givenName": "Florin", 
        "type": "Person"
      }, 
      {
        "familyName": "Ko\u0142odziej", 
        "givenName": "Joanna", 
        "type": "Person"
      }, 
      {
        "familyName": "Di Martino", 
        "givenName": "Beniamino", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-44881-7_9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-44880-0", 
        "978-3-319-44881-7"
      ], 
      "name": "Resource Management for Big Data Platforms", 
      "type": "Book"
    }, 
    "name": "Information Fusion for Improving Decision-Making in Big Data Applications", 
    "pagination": "171-188", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-44881-7_9"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "38fa175ec3b700b9f68aef3924ac2b7bf51ff3579fb33c1aa84fa2a61f90c242"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011958498"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-44881-7_9", 
      "https://app.dimensions.ai/details/publication/pub.1011958498"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000250.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-44881-7_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-44881-7_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-44881-7_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-44881-7_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-44881-7_9'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      23 PREDICATES      54 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-44881-7_9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Na2ab9ef4e36147e8a76c5baa1ee707e5
4 schema:citation sg:pub.10.1007/978-3-319-01854-6_22
5 sg:pub.10.1007/978-3-319-07767-3_19
6 https://doi.org/10.1016/j.inffus.2005.07.003
7 https://doi.org/10.1016/j.inffus.2005.11.002
8 https://doi.org/10.1016/j.inffus.2009.01.002
9 https://doi.org/10.1016/j.inffus.2009.03.001
10 https://doi.org/10.1016/j.inffus.2009.03.002
11 https://doi.org/10.1016/j.ins.2012.10.031
12 https://doi.org/10.1109/5.554206
13 https://doi.org/10.1109/69.846291
14 https://doi.org/10.1109/acssc.1993.342520
15 https://doi.org/10.1109/dfua.2003.1219950
16 https://doi.org/10.1109/icif.2002.1021139
17 https://doi.org/10.1109/icif.2002.1021189
18 https://doi.org/10.1109/icif.2002.1021205
19 https://doi.org/10.1109/icif.2005.1591935
20 https://doi.org/10.1109/icif.2005.1592050
21 https://doi.org/10.1109/icif.2007.4408022
22 https://doi.org/10.1109/icif.2010.5711859
23 https://doi.org/10.1109/icif.2010.5712116
24 https://doi.org/10.1109/icma.2007.4303855
25 https://doi.org/10.1109/oceans.2004.1406451
26 https://doi.org/10.1109/tcst.2010.2062183
27 https://doi.org/10.1142/s0129065711002833
28 https://doi.org/10.1145/342009.335372
29 https://doi.org/10.1145/846183.846197
30 https://doi.org/10.1518/001872095779049543
31 schema:datePublished 2016
32 schema:datePublishedReg 2016-01-01
33 schema:description The danger involved in oil and gas industry allied to, the not rare, world-spread accidents have promoted the concerns toward achieving and demonstrating good performance with regard to occupational, health and safety (OHS) issues. There are international OHS compliance policies that must be followed by any petroleum company to be able to operate. One of these policies is the register, at the spur of the moment, any anomaly that occurs during operation including environmental accidents, human accidents or, even, simply noncompliance behavior of the work force. In addition to register the anomaly, the entire process of analyzing, finding the root cause and solving the problem must get registered. As a consequence, an increasingly huge database has been created in many companies with these reports. The data may or may not be structured, but for sure is composed of different sources and types. For instance, whenever needed, data from the workforce will be registered side by side with data from the involved equipment. Human manipulation of this huge and diversified data is a difficult, or even impossible, task. We present a data fusion architecture coupled with a machine-learning layer for providing abstractions and inferences over the data. The idea is to prove that our approach allows analysts to infer the relevant root-cause-and-effect relations that underlie the domain. We developed a system according to our model and used with data from a petroleum company. In addition to prove the feasibility of our approach we have compared with state-of-the art data mining techniques. Results have shown the efficiency in terms of accuracy and recall of our approach.
34 schema:editor N8edbc704ec7d4e598595f13ca3f43f4d
35 schema:genre chapter
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf Nfc3cdf15332a480488bad2d29a3fadef
39 schema:name Information Fusion for Improving Decision-Making in Big Data Applications
40 schema:pagination 171-188
41 schema:productId N7a013a390ee44398b50691033b0143eb
42 N7b292d23ac574c5a9f81c984b8328722
43 Nd9a20d00f9244eafb8cc3045d46eb900
44 schema:publisher Ndfe34a5f36c74c1caaf899195bf6e667
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011958498
46 https://doi.org/10.1007/978-3-319-44881-7_9
47 schema:sdDatePublished 2019-04-15T20:04
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nfe0a116839954805bfcc57e7549c8a21
50 schema:url http://link.springer.com/10.1007/978-3-319-44881-7_9
51 sgo:license sg:explorer/license/
52 sgo:sdDataset chapters
53 rdf:type schema:Chapter
54 N0fa197d05bdd41c7ba0293f7467f9f20 rdf:first N224e31b8ae0e46bbbbab1fd047770222
55 rdf:rest Nc406445cbe1f4fa080f2ad4956805050
56 N224e31b8ae0e46bbbbab1fd047770222 schema:familyName Kołodziej
57 schema:givenName Joanna
58 rdf:type schema:Person
59 N29606495451a42908515d5794c1d3f18 rdf:first sg:person.010563353054.10
60 rdf:rest N718c5ce8c4c24e8489767b3c3e884417
61 N29f95a15d6674329b36b6a0867db87f7 rdf:first sg:person.013310403353.54
62 rdf:rest N29606495451a42908515d5794c1d3f18
63 N718c5ce8c4c24e8489767b3c3e884417 rdf:first sg:person.07430767131.99
64 rdf:rest rdf:nil
65 N7a013a390ee44398b50691033b0143eb schema:name dimensions_id
66 schema:value pub.1011958498
67 rdf:type schema:PropertyValue
68 N7b292d23ac574c5a9f81c984b8328722 schema:name readcube_id
69 schema:value 38fa175ec3b700b9f68aef3924ac2b7bf51ff3579fb33c1aa84fa2a61f90c242
70 rdf:type schema:PropertyValue
71 N81292a110f854e159634b4e9ea33db86 schema:familyName Pop
72 schema:givenName Florin
73 rdf:type schema:Person
74 N8edbc704ec7d4e598595f13ca3f43f4d rdf:first N81292a110f854e159634b4e9ea33db86
75 rdf:rest N0fa197d05bdd41c7ba0293f7467f9f20
76 Na2ab9ef4e36147e8a76c5baa1ee707e5 rdf:first sg:person.07411775305.08
77 rdf:rest N29f95a15d6674329b36b6a0867db87f7
78 Nc406445cbe1f4fa080f2ad4956805050 rdf:first Nf3bc8bb849644a87a0ed16686250888f
79 rdf:rest rdf:nil
80 Nd9a20d00f9244eafb8cc3045d46eb900 schema:name doi
81 schema:value 10.1007/978-3-319-44881-7_9
82 rdf:type schema:PropertyValue
83 Ndfe34a5f36c74c1caaf899195bf6e667 schema:location Cham
84 schema:name Springer International Publishing
85 rdf:type schema:Organisation
86 Nf3bc8bb849644a87a0ed16686250888f schema:familyName Di Martino
87 schema:givenName Beniamino
88 rdf:type schema:Person
89 Nfc3cdf15332a480488bad2d29a3fadef schema:isbn 978-3-319-44880-0
90 978-3-319-44881-7
91 schema:name Resource Management for Big Data Platforms
92 rdf:type schema:Book
93 Nfe0a116839954805bfcc57e7549c8a21 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
96 schema:name Information and Computing Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
99 schema:name Artificial Intelligence and Image Processing
100 rdf:type schema:DefinedTerm
101 sg:person.010563353054.10 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
102 schema:familyName Molina
103 schema:givenName José Manuel
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010563353054.10
105 rdf:type schema:Person
106 sg:person.013310403353.54 schema:affiliation https://www.grid.ac/institutes/grid.411173.1
107 schema:familyName Martí
108 schema:givenName Luis
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013310403353.54
110 rdf:type schema:Person
111 sg:person.07411775305.08 schema:affiliation https://www.grid.ac/institutes/grid.412211.5
112 schema:familyName Sanchez-Pi
113 schema:givenName Nayat
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07411775305.08
115 rdf:type schema:Person
116 sg:person.07430767131.99 schema:affiliation https://www.grid.ac/institutes/grid.411173.1
117 schema:familyName García
118 schema:givenName Ana C. Bicharra
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07430767131.99
120 rdf:type schema:Person
121 sg:pub.10.1007/978-3-319-01854-6_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045774509
122 https://doi.org/10.1007/978-3-319-01854-6_22
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/978-3-319-07767-3_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027794870
125 https://doi.org/10.1007/978-3-319-07767-3_19
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.inffus.2005.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016780860
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.inffus.2005.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041107715
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.inffus.2009.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001730498
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.inffus.2009.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008311816
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.inffus.2009.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048670036
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.ins.2012.10.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011412742
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/5.554206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179649
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/69.846291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061213826
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/acssc.1993.342520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093325119
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/dfua.2003.1219950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094004181
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/icif.2002.1021139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095037157
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/icif.2002.1021189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093847881
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/icif.2002.1021205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094772448
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/icif.2005.1591935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095244224
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/icif.2005.1592050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093390060
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/icif.2007.4408022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094951146
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/icif.2010.5711859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093550268
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/icif.2010.5712116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095030223
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/icma.2007.4303855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093415289
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/oceans.2004.1406451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094999374
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/tcst.2010.2062183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061572975
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1142/s0129065711002833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062899275
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1145/342009.335372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025244221
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1145/846183.846197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041689350
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1518/001872095779049543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067596874
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.411173.1 schema:alternateName Fluminense Federal University
178 schema:name Institute of Computing, Universidade Federal Fluminense
179 rdf:type schema:Organization
180 https://www.grid.ac/institutes/grid.412211.5 schema:alternateName Rio de Janeiro State University
181 schema:name Institute of Mathematics and Statistics, Universidade do Estado do Rio de Janeiro
182 rdf:type schema:Organization
183 https://www.grid.ac/institutes/grid.7840.b schema:alternateName Carlos III University of Madrid
184 schema:name Computer Science Department, Universidad Carlos III de Madrid
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...