Information Fusion for Improving Decision-Making in Big Data Applications View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Nayat Sanchez-Pi , Luis Martí , José Manuel Molina , Ana C. Bicharra García

ABSTRACT

The danger involved in oil and gas industry allied to, the not rare, world-spread accidents have promoted the concerns toward achieving and demonstrating good performance with regard to occupational, health and safety (OHS) issues. There are international OHS compliance policies that must be followed by any petroleum company to be able to operate. One of these policies is the register, at the spur of the moment, any anomaly that occurs during operation including environmental accidents, human accidents or, even, simply noncompliance behavior of the work force. In addition to register the anomaly, the entire process of analyzing, finding the root cause and solving the problem must get registered. As a consequence, an increasingly huge database has been created in many companies with these reports. The data may or may not be structured, but for sure is composed of different sources and types. For instance, whenever needed, data from the workforce will be registered side by side with data from the involved equipment. Human manipulation of this huge and diversified data is a difficult, or even impossible, task. We present a data fusion architecture coupled with a machine-learning layer for providing abstractions and inferences over the data. The idea is to prove that our approach allows analysts to infer the relevant root-cause-and-effect relations that underlie the domain. We developed a system according to our model and used with data from a petroleum company. In addition to prove the feasibility of our approach we have compared with state-of-the art data mining techniques. Results have shown the efficiency in terms of accuracy and recall of our approach. More... »

PAGES

171-188

References to SciGraph publications

  • 2014. Text Classification Techniques in Oil Industry Applications in INTERNATIONAL JOINT CONFERENCE SOCO’13-CISIS’13-ICEUTE’13
  • 2014. High-Level Information Fusion for Risk and Accidents Prevention in Pervasive Oil Industry Environments in HIGHLIGHTS OF PRACTICAL APPLICATIONS OF HETEROGENEOUS MULTI-AGENT SYSTEMS. THE PAAMS COLLECTION
  • Book

    TITLE

    Resource Management for Big Data Platforms

    ISBN

    978-3-319-44880-0
    978-3-319-44881-7

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-44881-7_9

    DOI

    http://dx.doi.org/10.1007/978-3-319-44881-7_9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1011958498


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Rio de Janeiro State University", 
              "id": "https://www.grid.ac/institutes/grid.412211.5", 
              "name": [
                "Institute of Mathematics and Statistics, Universidade do Estado do Rio de Janeiro"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sanchez-Pi", 
            "givenName": "Nayat", 
            "id": "sg:person.07411775305.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07411775305.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fluminense Federal University", 
              "id": "https://www.grid.ac/institutes/grid.411173.1", 
              "name": [
                "Institute of Computing, Universidade Federal Fluminense"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mart\u00ed", 
            "givenName": "Luis", 
            "id": "sg:person.013310403353.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013310403353.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Carlos III University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.7840.b", 
              "name": [
                "Computer Science Department, Universidad Carlos III de Madrid"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Molina", 
            "givenName": "Jos\u00e9 Manuel", 
            "id": "sg:person.010563353054.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010563353054.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fluminense Federal University", 
              "id": "https://www.grid.ac/institutes/grid.411173.1", 
              "name": [
                "Institute of Computing, Universidade Federal Fluminense"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garc\u00eda", 
            "givenName": "Ana C. Bicharra", 
            "id": "sg:person.07430767131.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07430767131.99"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.inffus.2009.01.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001730498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.inffus.2009.03.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008311816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2012.10.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011412742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.inffus.2005.07.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016780860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.inffus.2005.07.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016780860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/342009.335372", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025244221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-07767-3_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027794870", 
              "https://doi.org/10.1007/978-3-319-07767-3_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.inffus.2005.11.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041107715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/846183.846197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041689350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-01854-6_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045774509", 
              "https://doi.org/10.1007/978-3-319-01854-6_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.inffus.2009.03.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048670036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/5.554206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061179649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/69.846291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061213826"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcst.2010.2062183", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061572975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0129065711002833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062899275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1518/001872095779049543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067596874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1518/001872095779049543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067596874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/acssc.1993.342520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093325119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icif.2005.1592050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093390060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icma.2007.4303855", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093415289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icif.2010.5711859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093550268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icif.2002.1021189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093847881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/dfua.2003.1219950", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094004181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icif.2002.1021205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094772448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icif.2007.4408022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094951146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/oceans.2004.1406451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094999374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icif.2010.5712116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095030223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icif.2002.1021139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095037157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icif.2005.1591935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095244224"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016", 
        "datePublishedReg": "2016-01-01", 
        "description": "The danger involved in oil and gas industry allied to, the not rare, world-spread accidents have promoted the concerns toward achieving and demonstrating good performance with regard to occupational, health and safety (OHS) issues. There are international OHS compliance policies that must be followed by any petroleum company to be able to operate. One of these policies is the register, at the spur of the moment, any anomaly that occurs during operation including environmental accidents, human accidents or, even, simply noncompliance behavior of the work force. In addition to register the anomaly, the entire process of analyzing, finding the root cause and solving the problem must get registered. As a consequence, an increasingly huge database has been created in many companies with these reports. The data may or may not be structured, but for sure is composed of different sources and types. For instance, whenever needed, data from the workforce will be registered side by side with data from the involved equipment. Human manipulation of this huge and diversified data is a difficult, or even impossible, task. We present a data fusion architecture coupled with a machine-learning layer for providing abstractions and inferences over the data. The idea is to prove that our approach allows analysts to infer the relevant root-cause-and-effect relations that underlie the domain. We developed a system according to our model and used with data from a petroleum company. In addition to prove the feasibility of our approach we have compared with state-of-the art data mining techniques. Results have shown the efficiency in terms of accuracy and recall of our approach.", 
        "editor": [
          {
            "familyName": "Pop", 
            "givenName": "Florin", 
            "type": "Person"
          }, 
          {
            "familyName": "Ko\u0142odziej", 
            "givenName": "Joanna", 
            "type": "Person"
          }, 
          {
            "familyName": "Di Martino", 
            "givenName": "Beniamino", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-44881-7_9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-44880-0", 
            "978-3-319-44881-7"
          ], 
          "name": "Resource Management for Big Data Platforms", 
          "type": "Book"
        }, 
        "name": "Information Fusion for Improving Decision-Making in Big Data Applications", 
        "pagination": "171-188", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-44881-7_9"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "38fa175ec3b700b9f68aef3924ac2b7bf51ff3579fb33c1aa84fa2a61f90c242"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1011958498"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-44881-7_9", 
          "https://app.dimensions.ai/details/publication/pub.1011958498"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T20:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000250.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-44881-7_9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-44881-7_9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-44881-7_9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-44881-7_9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-44881-7_9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    185 TRIPLES      23 PREDICATES      54 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-44881-7_9 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N5395df4f339a40ac88047e91bd7377f9
    4 schema:citation sg:pub.10.1007/978-3-319-01854-6_22
    5 sg:pub.10.1007/978-3-319-07767-3_19
    6 https://doi.org/10.1016/j.inffus.2005.07.003
    7 https://doi.org/10.1016/j.inffus.2005.11.002
    8 https://doi.org/10.1016/j.inffus.2009.01.002
    9 https://doi.org/10.1016/j.inffus.2009.03.001
    10 https://doi.org/10.1016/j.inffus.2009.03.002
    11 https://doi.org/10.1016/j.ins.2012.10.031
    12 https://doi.org/10.1109/5.554206
    13 https://doi.org/10.1109/69.846291
    14 https://doi.org/10.1109/acssc.1993.342520
    15 https://doi.org/10.1109/dfua.2003.1219950
    16 https://doi.org/10.1109/icif.2002.1021139
    17 https://doi.org/10.1109/icif.2002.1021189
    18 https://doi.org/10.1109/icif.2002.1021205
    19 https://doi.org/10.1109/icif.2005.1591935
    20 https://doi.org/10.1109/icif.2005.1592050
    21 https://doi.org/10.1109/icif.2007.4408022
    22 https://doi.org/10.1109/icif.2010.5711859
    23 https://doi.org/10.1109/icif.2010.5712116
    24 https://doi.org/10.1109/icma.2007.4303855
    25 https://doi.org/10.1109/oceans.2004.1406451
    26 https://doi.org/10.1109/tcst.2010.2062183
    27 https://doi.org/10.1142/s0129065711002833
    28 https://doi.org/10.1145/342009.335372
    29 https://doi.org/10.1145/846183.846197
    30 https://doi.org/10.1518/001872095779049543
    31 schema:datePublished 2016
    32 schema:datePublishedReg 2016-01-01
    33 schema:description The danger involved in oil and gas industry allied to, the not rare, world-spread accidents have promoted the concerns toward achieving and demonstrating good performance with regard to occupational, health and safety (OHS) issues. There are international OHS compliance policies that must be followed by any petroleum company to be able to operate. One of these policies is the register, at the spur of the moment, any anomaly that occurs during operation including environmental accidents, human accidents or, even, simply noncompliance behavior of the work force. In addition to register the anomaly, the entire process of analyzing, finding the root cause and solving the problem must get registered. As a consequence, an increasingly huge database has been created in many companies with these reports. The data may or may not be structured, but for sure is composed of different sources and types. For instance, whenever needed, data from the workforce will be registered side by side with data from the involved equipment. Human manipulation of this huge and diversified data is a difficult, or even impossible, task. We present a data fusion architecture coupled with a machine-learning layer for providing abstractions and inferences over the data. The idea is to prove that our approach allows analysts to infer the relevant root-cause-and-effect relations that underlie the domain. We developed a system according to our model and used with data from a petroleum company. In addition to prove the feasibility of our approach we have compared with state-of-the art data mining techniques. Results have shown the efficiency in terms of accuracy and recall of our approach.
    34 schema:editor N67e7ac23d9844c7394a4389ef0c9661a
    35 schema:genre chapter
    36 schema:inLanguage en
    37 schema:isAccessibleForFree false
    38 schema:isPartOf N53c690c9de3a4a9ca3f111c06047267d
    39 schema:name Information Fusion for Improving Decision-Making in Big Data Applications
    40 schema:pagination 171-188
    41 schema:productId Nb37378e9b6b547c2a32ebc70ee0d864e
    42 Nbbee880eb8f04576b6d28f146be8cb2d
    43 Nbfdae477b6a246c9afb4c9b954bc07a0
    44 schema:publisher Nb0bc21be58f74d9fa2fb7e3ce896332a
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011958498
    46 https://doi.org/10.1007/978-3-319-44881-7_9
    47 schema:sdDatePublished 2019-04-15T20:04
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher Nb4d7bd5f1e98496a8689fd493005bfbf
    50 schema:url http://link.springer.com/10.1007/978-3-319-44881-7_9
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset chapters
    53 rdf:type schema:Chapter
    54 N1675ce62f7684799b32e41078141b700 rdf:first Nd80c87662ff14ef69b3ada142c88771f
    55 rdf:rest rdf:nil
    56 N3659c575d6624655976fe2beb27f8972 rdf:first sg:person.010563353054.10
    57 rdf:rest Nd4840712926c4c5bb4a8276b115b7863
    58 N5395df4f339a40ac88047e91bd7377f9 rdf:first sg:person.07411775305.08
    59 rdf:rest N9d400ba3075647c79b2acc3db8181a1a
    60 N53c690c9de3a4a9ca3f111c06047267d schema:isbn 978-3-319-44880-0
    61 978-3-319-44881-7
    62 schema:name Resource Management for Big Data Platforms
    63 rdf:type schema:Book
    64 N54c6e0b752984e37a58240e76fe0cabb schema:familyName Kołodziej
    65 schema:givenName Joanna
    66 rdf:type schema:Person
    67 N67e7ac23d9844c7394a4389ef0c9661a rdf:first N80fbd8ba4d3f4e47b0d3b4c08b06eadc
    68 rdf:rest Nd4bb32b5b704497daeae9bf296b48284
    69 N80fbd8ba4d3f4e47b0d3b4c08b06eadc schema:familyName Pop
    70 schema:givenName Florin
    71 rdf:type schema:Person
    72 N9d400ba3075647c79b2acc3db8181a1a rdf:first sg:person.013310403353.54
    73 rdf:rest N3659c575d6624655976fe2beb27f8972
    74 Nb0bc21be58f74d9fa2fb7e3ce896332a schema:location Cham
    75 schema:name Springer International Publishing
    76 rdf:type schema:Organisation
    77 Nb37378e9b6b547c2a32ebc70ee0d864e schema:name doi
    78 schema:value 10.1007/978-3-319-44881-7_9
    79 rdf:type schema:PropertyValue
    80 Nb4d7bd5f1e98496a8689fd493005bfbf schema:name Springer Nature - SN SciGraph project
    81 rdf:type schema:Organization
    82 Nbbee880eb8f04576b6d28f146be8cb2d schema:name dimensions_id
    83 schema:value pub.1011958498
    84 rdf:type schema:PropertyValue
    85 Nbfdae477b6a246c9afb4c9b954bc07a0 schema:name readcube_id
    86 schema:value 38fa175ec3b700b9f68aef3924ac2b7bf51ff3579fb33c1aa84fa2a61f90c242
    87 rdf:type schema:PropertyValue
    88 Nd4840712926c4c5bb4a8276b115b7863 rdf:first sg:person.07430767131.99
    89 rdf:rest rdf:nil
    90 Nd4bb32b5b704497daeae9bf296b48284 rdf:first N54c6e0b752984e37a58240e76fe0cabb
    91 rdf:rest N1675ce62f7684799b32e41078141b700
    92 Nd80c87662ff14ef69b3ada142c88771f schema:familyName Di Martino
    93 schema:givenName Beniamino
    94 rdf:type schema:Person
    95 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Information and Computing Sciences
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Artificial Intelligence and Image Processing
    100 rdf:type schema:DefinedTerm
    101 sg:person.010563353054.10 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
    102 schema:familyName Molina
    103 schema:givenName José Manuel
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010563353054.10
    105 rdf:type schema:Person
    106 sg:person.013310403353.54 schema:affiliation https://www.grid.ac/institutes/grid.411173.1
    107 schema:familyName Martí
    108 schema:givenName Luis
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013310403353.54
    110 rdf:type schema:Person
    111 sg:person.07411775305.08 schema:affiliation https://www.grid.ac/institutes/grid.412211.5
    112 schema:familyName Sanchez-Pi
    113 schema:givenName Nayat
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07411775305.08
    115 rdf:type schema:Person
    116 sg:person.07430767131.99 schema:affiliation https://www.grid.ac/institutes/grid.411173.1
    117 schema:familyName García
    118 schema:givenName Ana C. Bicharra
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07430767131.99
    120 rdf:type schema:Person
    121 sg:pub.10.1007/978-3-319-01854-6_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045774509
    122 https://doi.org/10.1007/978-3-319-01854-6_22
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/978-3-319-07767-3_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027794870
    125 https://doi.org/10.1007/978-3-319-07767-3_19
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/j.inffus.2005.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016780860
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/j.inffus.2005.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041107715
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/j.inffus.2009.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001730498
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.inffus.2009.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008311816
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.inffus.2009.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048670036
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.ins.2012.10.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011412742
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1109/5.554206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179649
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1109/69.846291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061213826
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1109/acssc.1993.342520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093325119
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1109/dfua.2003.1219950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094004181
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1109/icif.2002.1021139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095037157
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1109/icif.2002.1021189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093847881
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1109/icif.2002.1021205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094772448
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1109/icif.2005.1591935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095244224
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1109/icif.2005.1592050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093390060
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1109/icif.2007.4408022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094951146
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1109/icif.2010.5711859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093550268
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1109/icif.2010.5712116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095030223
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1109/icma.2007.4303855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093415289
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1109/oceans.2004.1406451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094999374
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1109/tcst.2010.2062183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061572975
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1142/s0129065711002833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062899275
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1145/342009.335372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025244221
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1145/846183.846197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041689350
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1518/001872095779049543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067596874
    176 rdf:type schema:CreativeWork
    177 https://www.grid.ac/institutes/grid.411173.1 schema:alternateName Fluminense Federal University
    178 schema:name Institute of Computing, Universidade Federal Fluminense
    179 rdf:type schema:Organization
    180 https://www.grid.ac/institutes/grid.412211.5 schema:alternateName Rio de Janeiro State University
    181 schema:name Institute of Mathematics and Statistics, Universidade do Estado do Rio de Janeiro
    182 rdf:type schema:Organization
    183 https://www.grid.ac/institutes/grid.7840.b schema:alternateName Carlos III University of Madrid
    184 schema:name Computer Science Department, Universidad Carlos III de Madrid
    185 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...