Ontology type: schema:Chapter
2016
AUTHORSJean-Paul Banquet , Souheïl Hanoune , Philippe Gaussier , Mathias Quoy
ABSTRACTThe distinction between cognitive goal-oriented and SR habitual behavior has long been classical in Neuroscience. Nevertheless, the mechanisms of the two types of behaviors as well as their interactions are poorly understood, in spite of significant advances in the knowledge of their supporting structures, the cortico-striatal loops. A neural network (NN) model of the dynamics of these systems during a goal navigation paradigm is presented within the framework of reinforcement learning. The model supposing, the parallel interactive learning of cognitive and habitual strategies, replicates key experimental results related to the transition between them. The biological inspiration of the NN architecture provides insights on the nature of their interactions, and the conditions of their respective engagement in the control of behavior. More... »
PAGES238-247
Artificial Neural Networks and Machine Learning – ICANN 2016
ISBN
978-3-319-44777-3
978-3-319-44778-0
http://scigraph.springernature.com/pub.10.1007/978-3-319-44778-0_28
DOIhttp://dx.doi.org/10.1007/978-3-319-44778-0_28
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1005850428
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology and Cognitive Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Cergy-Pontoise University",
"id": "https://www.grid.ac/institutes/grid.7901.f",
"name": [
"Neurocybernetics Team, ETIS UMR 8051 ENSEA - Universit de Cergy-Pontoise - CNRS"
],
"type": "Organization"
},
"familyName": "Banquet",
"givenName": "Jean-Paul",
"id": "sg:person.0773157354.72",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773157354.72"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cergy-Pontoise University",
"id": "https://www.grid.ac/institutes/grid.7901.f",
"name": [
"Neurocybernetics Team, ETIS UMR 8051 ENSEA - Universit de Cergy-Pontoise - CNRS"
],
"type": "Organization"
},
"familyName": "Hanoune",
"givenName": "Souhe\u00efl",
"id": "sg:person.010526327000.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010526327000.16"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cergy-Pontoise University",
"id": "https://www.grid.ac/institutes/grid.7901.f",
"name": [
"Neurocybernetics Team, ETIS UMR 8051 ENSEA - Universit de Cergy-Pontoise - CNRS"
],
"type": "Organization"
},
"familyName": "Gaussier",
"givenName": "Philippe",
"id": "sg:person.01041272554.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041272554.05"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cergy-Pontoise University",
"id": "https://www.grid.ac/institutes/grid.7901.f",
"name": [
"Neurocybernetics Team, ETIS UMR 8051 ENSEA - Universit de Cergy-Pontoise - CNRS"
],
"type": "Organization"
},
"familyName": "Quoy",
"givenName": "Mathias",
"id": "sg:person.010556353111.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010556353111.37"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/j.neunet.2013.01.023",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000034794"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1523/jneurosci.2864-06.2007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003518042"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3389/neuro.12.003.2007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003938660"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0921-8890(02)00164-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010275074"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s004220100269",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015097071",
"https://doi.org/10.1007/s004220100269"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1162/0899766053630369",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029175794"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3389/fnbeh.2012.00079",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033748237"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nn1560",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035060211",
"https://doi.org/10.1038/nn1560"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nn1560",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035060211",
"https://doi.org/10.1038/nn1560"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0166-4115(97)80121-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038179048"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00422-010-0400-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046247350",
"https://doi.org/10.1007/s00422-010-0400-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00422-010-0400-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046247350",
"https://doi.org/10.1007/s00422-010-0400-z"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1006/nlme.1996.0007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053384819"
],
"type": "CreativeWork"
}
],
"datePublished": "2016",
"datePublishedReg": "2016-01-01",
"description": "The distinction between cognitive goal-oriented and SR habitual behavior has long been classical in Neuroscience. Nevertheless, the mechanisms of the two types of behaviors as well as their interactions are poorly understood, in spite of significant advances in the knowledge of their supporting structures, the cortico-striatal loops. A neural network (NN) model of the dynamics of these systems during a goal navigation paradigm is presented within the framework of reinforcement learning. The model supposing, the parallel interactive learning of cognitive and habitual strategies, replicates key experimental results related to the transition between them. The biological inspiration of the NN architecture provides insights on the nature of their interactions, and the conditions of their respective engagement in the control of behavior.",
"editor": [
{
"familyName": "Villa",
"givenName": "Alessandro E.P.",
"type": "Person"
},
{
"familyName": "Masulli",
"givenName": "Paolo",
"type": "Person"
},
{
"familyName": "Pons Rivero",
"givenName": "Antonio Javier",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-44778-0_28",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-44777-3",
"978-3-319-44778-0"
],
"name": "Artificial Neural Networks and Machine Learning \u2013 ICANN 2016",
"type": "Book"
},
"name": "From Cognitive to Habit Behavior During Navigation, Through Cortical-Basal Ganglia Loops",
"pagination": "238-247",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-44778-0_28"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"1bdf5257c6497de1ef3128cf9df9cb000065327518dda50164fcf27f376a1822"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1005850428"
]
}
],
"publisher": {
"location": "Cham",
"name": "Springer International Publishing",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-44778-0_28",
"https://app.dimensions.ai/details/publication/pub.1005850428"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T20:03",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000246.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-319-44778-0_28"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-44778-0_28'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-44778-0_28'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-44778-0_28'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-44778-0_28'
This table displays all metadata directly associated to this object as RDF triples.
132 TRIPLES
23 PREDICATES
38 URIs
20 LITERALS
8 BLANK NODES