Outer Membrane Vesicles of Bacteria: Structure, Biogenesis, and Function View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-04-08

AUTHORS

Armaity Nasarabadi , James E. Berleman , Manfred Auer

ABSTRACT

Extracellular membrane vesicles (EMVs), a characteristic present across each domain of life, are subcellular shuttles of biologically active cargo that have a variety of functions ranging from cell-to-cell communication to predatory behavior. Mechanism(s) governing EMV biogenesis remain elusive; however, several initiators have been determined such as stress stimuli, sensing a potential prey or intruder, and signaling molecules. Regardless of function, increased membrane curvature and bulging is a key characteristic that leads to budding and release. This chapter highlights the differences between biogenesis processes of the bacteria, archaea and eukarya. We then focus on the outer membrane vesicles (OMVs) specific to Gram-negative bacteria, including several mechanism(s) that potentially explain how the loss of crucial OM-peptidoglycan (PGN) and OM-PGN-inner membrane (IM) interactions can destabilize the OM to result in OMV biogenesis. Despite gaps present in the current understanding of these novel organelles, OMVs are one mechanism that allow microbial cells to function as multicellular organisms, as pathogens, and act as key predators in their environment. We discuss the importance in better understanding OMV biogenesis for greater insight into how this form of membrane architecture can be utilized for vaccines and targeted/specific treatments for infections. More... »

PAGES

1-15

Book

TITLE

Biogenesis of Fatty Acids, Lipids and Membranes

ISBN

978-3-319-43676-0
978-3-319-43676-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-43676-0_44-1

DOI

http://dx.doi.org/10.1007/978-3-319-43676-0_44-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085418936


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Lawrence Berkeley National Laboratory"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nasarabadi", 
        "givenName": "Armaity", 
        "id": "sg:person.016003037506.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016003037506.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saint Mary\u2019s College of California", 
          "id": "http://www.grid.ac/institutes/grid.421780.8", 
          "name": [
            "Lawrence Berkeley National Laboratory", 
            "Saint Mary\u2019s College of California"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berleman", 
        "givenName": "James E.", 
        "id": "sg:person.01202647523.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202647523.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Lawrence Berkeley National Laboratory"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Auer", 
        "givenName": "Manfred", 
        "id": "sg:person.0652233644.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652233644.88"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-04-08", 
    "datePublishedReg": "2017-04-08", 
    "description": "Extracellular membrane vesicles (EMVs), a characteristic present across each domain of life, are subcellular shuttles of biologically active cargo that have a variety of functions ranging from cell-to-cell communication to predatory behavior. Mechanism(s) governing EMV biogenesis remain elusive; however, several initiators have been determined such as stress stimuli, sensing a potential prey or intruder, and signaling molecules. Regardless of function, increased membrane curvature and bulging is a key characteristic that leads to budding and release. This chapter highlights the differences between biogenesis processes of the bacteria, archaea and eukarya. We then focus on the outer membrane vesicles (OMVs) specific to Gram-negative bacteria, including several mechanism(s) that potentially explain how the loss of crucial OM-peptidoglycan (PGN) and OM-PGN-inner membrane (IM) interactions can destabilize the OM to result in OMV biogenesis. Despite gaps present in the current understanding of these novel organelles, OMVs are one mechanism that allow microbial cells to function as multicellular organisms, as pathogens, and act as key predators in their environment. We discuss the importance in better understanding OMV biogenesis for greater insight into how this form of membrane architecture can be utilized for vaccines and targeted/specific treatments for infections.", 
    "editor": [
      {
        "familyName": "Geiger", 
        "givenName": "Otto", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-43676-0_44-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-43676-0", 
        "978-3-319-43676-0"
      ], 
      "name": "Biogenesis of Fatty Acids, Lipids and Membranes", 
      "type": "Book"
    }, 
    "keywords": [
      "outer membrane vesicles", 
      "extracellular membrane vesicles", 
      "OMV biogenesis", 
      "membrane vesicles", 
      "domains of life", 
      "inner membrane interactions", 
      "multicellular organisms", 
      "EMV biogenesis", 
      "novel organelle", 
      "Gram-negative bacteria", 
      "biogenesis process", 
      "key predators", 
      "potential prey", 
      "cell communication", 
      "membrane curvature", 
      "membrane architecture", 
      "variety of functions", 
      "biogenesis", 
      "microbial cells", 
      "stress stimuli", 
      "membrane interactions", 
      "predatory behavior", 
      "active cargo", 
      "vesicles", 
      "bacteria", 
      "current understanding", 
      "Eukarya", 
      "archaea", 
      "cells", 
      "predators", 
      "prey", 
      "organelles", 
      "budding", 
      "organisms", 
      "greater insight", 
      "characteristic present", 
      "cargo", 
      "pathogens", 
      "function", 
      "domain", 
      "molecules", 
      "insights", 
      "mechanism", 
      "shuttle", 
      "interaction", 
      "understanding", 
      "variety", 
      "loss", 
      "importance", 
      "intruders", 
      "structure", 
      "environment", 
      "stimuli", 
      "infection", 
      "key characteristics", 
      "form", 
      "process", 
      "present", 
      "chapter", 
      "differences", 
      "architecture", 
      "OM", 
      "treatment", 
      "initiator", 
      "vaccine", 
      "characteristics", 
      "behavior", 
      "gap", 
      "specific treatment", 
      "life", 
      "communication", 
      "curvature", 
      "bulging"
    ], 
    "name": "Outer Membrane Vesicles of Bacteria: Structure, Biogenesis, and Function", 
    "pagination": "1-15", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085418936"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-43676-0_44-1"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-43676-0_44-1", 
      "https://app.dimensions.ai/details/publication/pub.1085418936"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_303.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-43676-0_44-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-43676-0_44-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-43676-0_44-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-43676-0_44-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-43676-0_44-1'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      23 PREDICATES      98 URIs      90 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-43676-0_44-1 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 anzsrc-for:0605
4 schema:author N3d11ccb8d09342e8b8b6f5b1ba1c1f7f
5 schema:datePublished 2017-04-08
6 schema:datePublishedReg 2017-04-08
7 schema:description Extracellular membrane vesicles (EMVs), a characteristic present across each domain of life, are subcellular shuttles of biologically active cargo that have a variety of functions ranging from cell-to-cell communication to predatory behavior. Mechanism(s) governing EMV biogenesis remain elusive; however, several initiators have been determined such as stress stimuli, sensing a potential prey or intruder, and signaling molecules. Regardless of function, increased membrane curvature and bulging is a key characteristic that leads to budding and release. This chapter highlights the differences between biogenesis processes of the bacteria, archaea and eukarya. We then focus on the outer membrane vesicles (OMVs) specific to Gram-negative bacteria, including several mechanism(s) that potentially explain how the loss of crucial OM-peptidoglycan (PGN) and OM-PGN-inner membrane (IM) interactions can destabilize the OM to result in OMV biogenesis. Despite gaps present in the current understanding of these novel organelles, OMVs are one mechanism that allow microbial cells to function as multicellular organisms, as pathogens, and act as key predators in their environment. We discuss the importance in better understanding OMV biogenesis for greater insight into how this form of membrane architecture can be utilized for vaccines and targeted/specific treatments for infections.
8 schema:editor N2627ee47745d4f2e9499b84cf60eed95
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N82dd250033c14771b9786b8a4a35a9cb
13 schema:keywords EMV biogenesis
14 Eukarya
15 Gram-negative bacteria
16 OM
17 OMV biogenesis
18 active cargo
19 archaea
20 architecture
21 bacteria
22 behavior
23 biogenesis
24 biogenesis process
25 budding
26 bulging
27 cargo
28 cell communication
29 cells
30 chapter
31 characteristic present
32 characteristics
33 communication
34 current understanding
35 curvature
36 differences
37 domain
38 domains of life
39 environment
40 extracellular membrane vesicles
41 form
42 function
43 gap
44 greater insight
45 importance
46 infection
47 initiator
48 inner membrane interactions
49 insights
50 interaction
51 intruders
52 key characteristics
53 key predators
54 life
55 loss
56 mechanism
57 membrane architecture
58 membrane curvature
59 membrane interactions
60 membrane vesicles
61 microbial cells
62 molecules
63 multicellular organisms
64 novel organelle
65 organelles
66 organisms
67 outer membrane vesicles
68 pathogens
69 potential prey
70 predators
71 predatory behavior
72 present
73 prey
74 process
75 shuttle
76 specific treatment
77 stimuli
78 stress stimuli
79 structure
80 treatment
81 understanding
82 vaccine
83 variety
84 variety of functions
85 vesicles
86 schema:name Outer Membrane Vesicles of Bacteria: Structure, Biogenesis, and Function
87 schema:pagination 1-15
88 schema:productId N1c4a02863164415896ff8a379a7b1d87
89 N8c3fbb4311764dbeb35bc1bcbf7c4a61
90 schema:publisher Nb14b2ec5c96e4e98a082663414ce0874
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085418936
92 https://doi.org/10.1007/978-3-319-43676-0_44-1
93 schema:sdDatePublished 2022-05-20T07:45
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher N1334b7e2f8624f82bdbc5b047ddd5ebd
96 schema:url https://doi.org/10.1007/978-3-319-43676-0_44-1
97 sgo:license sg:explorer/license/
98 sgo:sdDataset chapters
99 rdf:type schema:Chapter
100 N03f21033f6f745c7af081f9f14b5054f rdf:first sg:person.0652233644.88
101 rdf:rest rdf:nil
102 N1334b7e2f8624f82bdbc5b047ddd5ebd schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N1768dae017c9402b87ae6261c68bcf80 rdf:first sg:person.01202647523.02
105 rdf:rest N03f21033f6f745c7af081f9f14b5054f
106 N1c4a02863164415896ff8a379a7b1d87 schema:name doi
107 schema:value 10.1007/978-3-319-43676-0_44-1
108 rdf:type schema:PropertyValue
109 N2627ee47745d4f2e9499b84cf60eed95 rdf:first Nfdd6362457554d46b2b2c4ca040c0207
110 rdf:rest rdf:nil
111 N3d11ccb8d09342e8b8b6f5b1ba1c1f7f rdf:first sg:person.016003037506.17
112 rdf:rest N1768dae017c9402b87ae6261c68bcf80
113 N82dd250033c14771b9786b8a4a35a9cb schema:isbn 978-3-319-43676-0
114 schema:name Biogenesis of Fatty Acids, Lipids and Membranes
115 rdf:type schema:Book
116 N8c3fbb4311764dbeb35bc1bcbf7c4a61 schema:name dimensions_id
117 schema:value pub.1085418936
118 rdf:type schema:PropertyValue
119 Nb14b2ec5c96e4e98a082663414ce0874 schema:name Springer Nature
120 rdf:type schema:Organisation
121 Nfdd6362457554d46b2b2c4ca040c0207 schema:familyName Geiger
122 schema:givenName Otto
123 rdf:type schema:Person
124 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
125 schema:name Biological Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
128 schema:name Biochemistry and Cell Biology
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
131 schema:name Microbiology
132 rdf:type schema:DefinedTerm
133 sg:person.01202647523.02 schema:affiliation grid-institutes:grid.421780.8
134 schema:familyName Berleman
135 schema:givenName James E.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202647523.02
137 rdf:type schema:Person
138 sg:person.016003037506.17 schema:affiliation grid-institutes:grid.184769.5
139 schema:familyName Nasarabadi
140 schema:givenName Armaity
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016003037506.17
142 rdf:type schema:Person
143 sg:person.0652233644.88 schema:affiliation grid-institutes:grid.184769.5
144 schema:familyName Auer
145 schema:givenName Manfred
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652233644.88
147 rdf:type schema:Person
148 grid-institutes:grid.184769.5 schema:alternateName Lawrence Berkeley National Laboratory
149 schema:name Lawrence Berkeley National Laboratory
150 rdf:type schema:Organization
151 grid-institutes:grid.421780.8 schema:alternateName Saint Mary’s College of California
152 schema:name Lawrence Berkeley National Laboratory
153 Saint Mary’s College of California
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...