Wormhole Approach to Control in Distributed Computing Has Direct Relation to Physics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

Nicolás F. Lori , Victor Alves

ABSTRACT

The topic of Wormholes in distributed computing is about creating two different realms with different characteristics, the synchronous Wormholes and the asynchronous payload with the goal of using the wormholes to control the synchronism of the payload processes. We describe the characteristics of Wormholes in distributed computing, and relate them to issues in Physics, specifically, wormholes in general relativity and entanglement in quantum mechanics. The entanglement in quantum mechanics is about the existence of fixed relations between different physical systems as if they were still the same system. The entanglement is made evident by the occurrence of decoherence, which transform the multiple outcome possibilities of quantum systems into a single outcome “classical physics”-like objective reality. It is here presented the similarity between the decoherence process in quantum physics and the consensus problem in distributed computing. The approach to quantum mechanics used is quantum Darwinism, a Darwinian approach to decoherence where the environment controls the outcome of a measurement. It is here proposed that wormhole systems can be used to implement environment-based control of distributed computing systems. More... »

PAGES

105-115

References to SciGraph publications

Book

TITLE

CONTROLO 2016

ISBN

978-3-319-43670-8
978-3-319-43671-5

Author Affiliations

From Grant

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-43671-5_10

DOI

http://dx.doi.org/10.1007/978-3-319-43671-5_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023548465


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Minho", 
          "id": "https://www.grid.ac/institutes/grid.10328.38", 
          "name": [
            "Algoritmi Centre, University of Minho"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lori", 
        "givenName": "Nicol\u00e1s F.", 
        "id": "sg:person.01067042736.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067042736.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Minho", 
          "id": "https://www.grid.ac/institutes/grid.10328.38", 
          "name": [
            "Algoritmi Centre, University of Minho"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alves", 
        "givenName": "Victor", 
        "id": "sg:person.015601564205.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015601564205.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.111.211603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002178525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.211603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002178525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.052105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008672088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.052105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008672088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.052105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008672088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016203284", 
          "https://doi.org/10.1038/nphys1202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.64.071701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016267605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.64.071701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016267605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.48.73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021913902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.48.73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021913902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/226643.226647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037999704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1122480.1122497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038019810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3149.214121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038326732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature16528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046556298", 
          "https://doi.org/10.1038/nature16528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.17904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062237114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7208/chicago/9780226870373.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099556543"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "The topic of Wormholes in distributed computing is about creating two different realms with different characteristics, the synchronous Wormholes and the asynchronous payload with the goal of using the wormholes to control the synchronism of the payload processes. We describe the characteristics of Wormholes in distributed computing, and relate them to issues in Physics, specifically, wormholes in general relativity and entanglement in quantum mechanics. The entanglement in quantum mechanics is about the existence of fixed relations between different physical systems as if they were still the same system. The entanglement is made evident by the occurrence of decoherence, which transform the multiple outcome possibilities of quantum systems into a single outcome \u201cclassical physics\u201d-like objective reality. It is here presented the similarity between the decoherence process in quantum physics and the consensus problem in distributed computing. The approach to quantum mechanics used is quantum Darwinism, a Darwinian approach to decoherence where the environment controls the outcome of a measurement. It is here proposed that wormhole systems can be used to implement environment-based control of distributed computing systems.", 
    "editor": [
      {
        "familyName": "Garrido", 
        "givenName": "Paulo", 
        "type": "Person"
      }, 
      {
        "familyName": "Soares", 
        "givenName": "Filomena", 
        "type": "Person"
      }, 
      {
        "familyName": "Moreira", 
        "givenName": "Ant\u00f3nio Paulo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-43671-5_10", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3712570", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-319-43670-8", 
        "978-3-319-43671-5"
      ], 
      "name": "CONTROLO 2016", 
      "type": "Book"
    }, 
    "name": "Wormhole Approach to Control in Distributed Computing Has Direct Relation to Physics", 
    "pagination": "105-115", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-43671-5_10"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "703109c4697f138407d3233998d21d3da112fa316fdff463343ecea67fd61738"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023548465"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-43671-5_10", 
      "https://app.dimensions.ai/details/publication/pub.1023548465"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000257.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-43671-5_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-43671-5_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-43671-5_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-43671-5_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-43671-5_10'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-43671-5_10 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author Nda5137036bc34896a847d4d36aa0c48e
4 schema:citation sg:pub.10.1038/nature16528
5 sg:pub.10.1038/nphys1202
6 https://doi.org/10.1103/physrev.48.73
7 https://doi.org/10.1103/physreva.71.052105
8 https://doi.org/10.1103/physrevd.64.071701
9 https://doi.org/10.1103/physrevlett.111.211603
10 https://doi.org/10.1119/1.17904
11 https://doi.org/10.1145/1122480.1122497
12 https://doi.org/10.1145/226643.226647
13 https://doi.org/10.1145/3149.214121
14 https://doi.org/10.7208/chicago/9780226870373.001.0001
15 schema:datePublished 2017
16 schema:datePublishedReg 2017-01-01
17 schema:description The topic of Wormholes in distributed computing is about creating two different realms with different characteristics, the synchronous Wormholes and the asynchronous payload with the goal of using the wormholes to control the synchronism of the payload processes. We describe the characteristics of Wormholes in distributed computing, and relate them to issues in Physics, specifically, wormholes in general relativity and entanglement in quantum mechanics. The entanglement in quantum mechanics is about the existence of fixed relations between different physical systems as if they were still the same system. The entanglement is made evident by the occurrence of decoherence, which transform the multiple outcome possibilities of quantum systems into a single outcome “classical physics”-like objective reality. It is here presented the similarity between the decoherence process in quantum physics and the consensus problem in distributed computing. The approach to quantum mechanics used is quantum Darwinism, a Darwinian approach to decoherence where the environment controls the outcome of a measurement. It is here proposed that wormhole systems can be used to implement environment-based control of distributed computing systems.
18 schema:editor N595adaa819ed4681b07e4a1c9ff6da9c
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N5143128b06594a6ba1c4e6dc0380d8eb
23 schema:name Wormhole Approach to Control in Distributed Computing Has Direct Relation to Physics
24 schema:pagination 105-115
25 schema:productId N85842e8fc12a4b559caa2011b419f411
26 Nbbe4e573b99b4834b8f2b8d7f56db099
27 Ndfd959e6c8ad4eeeb40b5300c5b2c6e5
28 schema:publisher N2bd3367281f8462796e7a57cbe7a2253
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023548465
30 https://doi.org/10.1007/978-3-319-43671-5_10
31 schema:sdDatePublished 2019-04-15T13:27
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N09593dd0d0ab46f8afda405ea2220323
34 schema:url http://link.springer.com/10.1007/978-3-319-43671-5_10
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N09593dd0d0ab46f8afda405ea2220323 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N1e05b81f6b284c078bad70ff0eebe9a3 schema:familyName Soares
41 schema:givenName Filomena
42 rdf:type schema:Person
43 N2bd3367281f8462796e7a57cbe7a2253 schema:location Cham
44 schema:name Springer International Publishing
45 rdf:type schema:Organisation
46 N5143128b06594a6ba1c4e6dc0380d8eb schema:isbn 978-3-319-43670-8
47 978-3-319-43671-5
48 schema:name CONTROLO 2016
49 rdf:type schema:Book
50 N595adaa819ed4681b07e4a1c9ff6da9c rdf:first Nd8ff79152e594ef2bd12ef453cc70e11
51 rdf:rest Ne103bf09d9d64e3a95c2e3b8bc3be6bb
52 N5e983d7f59724dc8aadaca4b188e5889 schema:familyName Moreira
53 schema:givenName António Paulo
54 rdf:type schema:Person
55 N66ca7a3eb09b412f9927d647491d1879 rdf:first N5e983d7f59724dc8aadaca4b188e5889
56 rdf:rest rdf:nil
57 N85842e8fc12a4b559caa2011b419f411 schema:name dimensions_id
58 schema:value pub.1023548465
59 rdf:type schema:PropertyValue
60 Nbbe4e573b99b4834b8f2b8d7f56db099 schema:name doi
61 schema:value 10.1007/978-3-319-43671-5_10
62 rdf:type schema:PropertyValue
63 Nd8ff79152e594ef2bd12ef453cc70e11 schema:familyName Garrido
64 schema:givenName Paulo
65 rdf:type schema:Person
66 Nda5137036bc34896a847d4d36aa0c48e rdf:first sg:person.01067042736.55
67 rdf:rest Ne789ec3c92d648c78edb1147029fad98
68 Ndfd959e6c8ad4eeeb40b5300c5b2c6e5 schema:name readcube_id
69 schema:value 703109c4697f138407d3233998d21d3da112fa316fdff463343ecea67fd61738
70 rdf:type schema:PropertyValue
71 Ne103bf09d9d64e3a95c2e3b8bc3be6bb rdf:first N1e05b81f6b284c078bad70ff0eebe9a3
72 rdf:rest N66ca7a3eb09b412f9927d647491d1879
73 Ne789ec3c92d648c78edb1147029fad98 rdf:first sg:person.015601564205.40
74 rdf:rest rdf:nil
75 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
76 schema:name Physical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
79 schema:name Quantum Physics
80 rdf:type schema:DefinedTerm
81 sg:grant.3712570 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-43671-5_10
82 rdf:type schema:MonetaryGrant
83 sg:person.01067042736.55 schema:affiliation https://www.grid.ac/institutes/grid.10328.38
84 schema:familyName Lori
85 schema:givenName Nicolás F.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067042736.55
87 rdf:type schema:Person
88 sg:person.015601564205.40 schema:affiliation https://www.grid.ac/institutes/grid.10328.38
89 schema:familyName Alves
90 schema:givenName Victor
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015601564205.40
92 rdf:type schema:Person
93 sg:pub.10.1038/nature16528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046556298
94 https://doi.org/10.1038/nature16528
95 rdf:type schema:CreativeWork
96 sg:pub.10.1038/nphys1202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016203284
97 https://doi.org/10.1038/nphys1202
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrev.48.73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021913902
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physreva.71.052105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008672088
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physrevd.64.071701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016267605
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrevlett.111.211603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002178525
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1119/1.17904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062237114
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1145/1122480.1122497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038019810
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1145/226643.226647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037999704
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1145/3149.214121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038326732
114 rdf:type schema:CreativeWork
115 https://doi.org/10.7208/chicago/9780226870373.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099556543
116 rdf:type schema:CreativeWork
117 https://www.grid.ac/institutes/grid.10328.38 schema:alternateName University of Minho
118 schema:name Algoritmi Centre, University of Minho
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...