Can Haptic Feedback Improve Gesture Recognition in 3D Handwriting Systems? View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Dennis Babu , Seonghwan Kim , Hikaru Nagano , Masashi Konyo , Satoshi Tadokoro

ABSTRACT

Current gesture interfaces accept relatively simple postures and motions for reliable inputs, which are still far from natural and intuitive experiences for the users. This paper suggests a unique idea that haptic feedback has a potential to improve not only user experiences but also gesture recognition performances. We expect haptic feedback to provide users cues for natural writing movement and accordingly generate movement easily recognized by the system. We developed a writing gesture recognition system using the K-Means clustering algorithm for writing state estimation and a haptic feedback system which involved frictional sensation during writing and impulsive sensation at the beginning and ending of writing. The experiments on five participants showed an approximately 5 % and 4 % improvement in the true positive and the false negative gesture recognition rate with visual-haptic feedback compared to visual feedback alone. We confirmed that the improvement was due to changes in hand motion by haptic feedback, which led to a higher correlation between reference waveform and performed motion and an increase of the finger stopping time at the end of the writing. We also confirmed the positive effects of our haptic feedback on the user experiences. More... »

PAGES

462-471

Book

TITLE

Intelligent Robotics and Applications

ISBN

978-3-319-43505-3
978-3-319-43506-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-43506-0_41

DOI

http://dx.doi.org/10.1007/978-3-319-43506-0_41

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043115170


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Human Robot Informatics Lab, Graduate School of Information Sciences, Tohoku University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Babu", 
        "givenName": "Dennis", 
        "id": "sg:person.014260402137.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014260402137.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Human Robot Informatics Lab, Graduate School of Information Sciences, Tohoku University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Seonghwan", 
        "id": "sg:person.015055762537.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015055762537.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Human Robot Informatics Lab, Graduate School of Information Sciences, Tohoku University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagano", 
        "givenName": "Hikaru", 
        "id": "sg:person.010145067313.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010145067313.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Human Robot Informatics Lab, Graduate School of Information Sciences, Tohoku University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konyo", 
        "givenName": "Masashi", 
        "id": "sg:person.01101070023.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101070023.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Human Robot Informatics Lab, Graduate School of Information Sciences, Tohoku University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tadokoro", 
        "givenName": "Satoshi", 
        "id": "sg:person.013454033251.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013454033251.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1520340.1520568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002493830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2380116.2380173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002545604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2642918.2647407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007302830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1180995.1181017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033056308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s130506380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049629392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3516.951362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061160562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2014.2327229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061740861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/whc.2011.5945503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093204299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.2009.5354203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093762084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/whc.2015.7177748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094130166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/haptic.2012.6183785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094354159"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "Current gesture interfaces accept relatively simple postures and motions for reliable inputs, which are still far from natural and intuitive experiences for the users. This paper suggests a unique idea that haptic feedback has a potential to improve not only user experiences but also gesture recognition performances. We expect haptic feedback to provide users cues for natural writing movement and accordingly generate movement easily recognized by the system. We developed a writing gesture recognition system using the K-Means clustering algorithm for writing state estimation and a haptic feedback system which involved frictional sensation during writing and impulsive sensation at the beginning and ending of writing. The experiments on five participants showed an approximately 5\u00a0% and 4\u00a0% improvement in the true positive and the false negative gesture recognition rate with visual-haptic feedback compared to visual feedback alone. We confirmed that the improvement was due to changes in hand motion by haptic feedback, which led to a higher correlation between reference waveform and performed motion and an increase of the finger stopping time at the end of the writing. We also confirmed the positive effects of our haptic feedback on the user experiences.", 
    "editor": [
      {
        "familyName": "Kubota", 
        "givenName": "Naoyuki", 
        "type": "Person"
      }, 
      {
        "familyName": "Kiguchi", 
        "givenName": "Kazuo", 
        "type": "Person"
      }, 
      {
        "familyName": "Liu", 
        "givenName": "Honghai", 
        "type": "Person"
      }, 
      {
        "familyName": "Obo", 
        "givenName": "Takenori", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-43506-0_41", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-43505-3", 
        "978-3-319-43506-0"
      ], 
      "name": "Intelligent Robotics and Applications", 
      "type": "Book"
    }, 
    "name": "Can Haptic Feedback Improve Gesture Recognition in 3D Handwriting Systems?", 
    "pagination": "462-471", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-43506-0_41"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cd5f1e9860fedd4d8396bdef4696fe5fbfdbe3899820c37e45b4116e21440329"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043115170"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-43506-0_41", 
      "https://app.dimensions.ai/details/publication/pub.1043115170"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000270.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-43506-0_41"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-43506-0_41'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-43506-0_41'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-43506-0_41'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-43506-0_41'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-43506-0_41 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0fe3d87a57ae4cdda764c32275eeb45c
4 schema:citation https://doi.org/10.1109/3516.951362
5 https://doi.org/10.1109/haptic.2012.6183785
6 https://doi.org/10.1109/iros.2009.5354203
7 https://doi.org/10.1109/tnsre.2014.2327229
8 https://doi.org/10.1109/whc.2011.5945503
9 https://doi.org/10.1109/whc.2015.7177748
10 https://doi.org/10.1145/1180995.1181017
11 https://doi.org/10.1145/1520340.1520568
12 https://doi.org/10.1145/2380116.2380173
13 https://doi.org/10.1145/2642918.2647407
14 https://doi.org/10.3390/s130506380
15 schema:datePublished 2016
16 schema:datePublishedReg 2016-01-01
17 schema:description Current gesture interfaces accept relatively simple postures and motions for reliable inputs, which are still far from natural and intuitive experiences for the users. This paper suggests a unique idea that haptic feedback has a potential to improve not only user experiences but also gesture recognition performances. We expect haptic feedback to provide users cues for natural writing movement and accordingly generate movement easily recognized by the system. We developed a writing gesture recognition system using the K-Means clustering algorithm for writing state estimation and a haptic feedback system which involved frictional sensation during writing and impulsive sensation at the beginning and ending of writing. The experiments on five participants showed an approximately 5 % and 4 % improvement in the true positive and the false negative gesture recognition rate with visual-haptic feedback compared to visual feedback alone. We confirmed that the improvement was due to changes in hand motion by haptic feedback, which led to a higher correlation between reference waveform and performed motion and an increase of the finger stopping time at the end of the writing. We also confirmed the positive effects of our haptic feedback on the user experiences.
18 schema:editor N5cae1a2e7ee54d28a6f52e1d3be8ac3b
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf Nb0c28e85fd0e42fdab485e8e3032e6bb
23 schema:name Can Haptic Feedback Improve Gesture Recognition in 3D Handwriting Systems?
24 schema:pagination 462-471
25 schema:productId N4dc9418f3ea745c8aa412616d387067d
26 N726b4c2fdf2741dcae86b2141d41431f
27 Ncbdeb5a0bf6b440cb16939260e4803af
28 schema:publisher N4305dce32244497e9b2722d37a54f4ab
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043115170
30 https://doi.org/10.1007/978-3-319-43506-0_41
31 schema:sdDatePublished 2019-04-15T22:57
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Na564ff5cf3ff4cdbb016b5c8379dc971
34 schema:url http://link.springer.com/10.1007/978-3-319-43506-0_41
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N08dcad4877dc456a98a19fd3fc35d6b4 schema:familyName Liu
39 schema:givenName Honghai
40 rdf:type schema:Person
41 N0fe3d87a57ae4cdda764c32275eeb45c rdf:first sg:person.014260402137.05
42 rdf:rest Ne8e2be57f1d942a99b4f10b0dc221fa2
43 N14c1611f70b5426a84e6527fdd4c4da8 rdf:first N08dcad4877dc456a98a19fd3fc35d6b4
44 rdf:rest N92306cc315774f598fc484e69aa1363a
45 N1b1e2aa8879949b489025b74efd20f83 rdf:first sg:person.010145067313.58
46 rdf:rest N4da186ec2faf44dea94dd1b112a24b0f
47 N3a1c399284e5491586ab4a2ea2e639da schema:familyName Kiguchi
48 schema:givenName Kazuo
49 rdf:type schema:Person
50 N4305dce32244497e9b2722d37a54f4ab schema:location Cham
51 schema:name Springer International Publishing
52 rdf:type schema:Organisation
53 N439e1550925d4c40a31b7c927bd0f3a4 rdf:first sg:person.013454033251.77
54 rdf:rest rdf:nil
55 N4da186ec2faf44dea94dd1b112a24b0f rdf:first sg:person.01101070023.41
56 rdf:rest N439e1550925d4c40a31b7c927bd0f3a4
57 N4dc9418f3ea745c8aa412616d387067d schema:name readcube_id
58 schema:value cd5f1e9860fedd4d8396bdef4696fe5fbfdbe3899820c37e45b4116e21440329
59 rdf:type schema:PropertyValue
60 N5cae1a2e7ee54d28a6f52e1d3be8ac3b rdf:first N6914665f23da4813a7af4a8962d2e888
61 rdf:rest Nf703192a6c7e4c15a5085c9da6f15d69
62 N6914665f23da4813a7af4a8962d2e888 schema:familyName Kubota
63 schema:givenName Naoyuki
64 rdf:type schema:Person
65 N726b4c2fdf2741dcae86b2141d41431f schema:name doi
66 schema:value 10.1007/978-3-319-43506-0_41
67 rdf:type schema:PropertyValue
68 N8890333be62443cd95ba879a560d7eb5 schema:familyName Obo
69 schema:givenName Takenori
70 rdf:type schema:Person
71 N92306cc315774f598fc484e69aa1363a rdf:first N8890333be62443cd95ba879a560d7eb5
72 rdf:rest rdf:nil
73 Na564ff5cf3ff4cdbb016b5c8379dc971 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Nb0c28e85fd0e42fdab485e8e3032e6bb schema:isbn 978-3-319-43505-3
76 978-3-319-43506-0
77 schema:name Intelligent Robotics and Applications
78 rdf:type schema:Book
79 Ncbdeb5a0bf6b440cb16939260e4803af schema:name dimensions_id
80 schema:value pub.1043115170
81 rdf:type schema:PropertyValue
82 Ne8e2be57f1d942a99b4f10b0dc221fa2 rdf:first sg:person.015055762537.93
83 rdf:rest N1b1e2aa8879949b489025b74efd20f83
84 Nf703192a6c7e4c15a5085c9da6f15d69 rdf:first N3a1c399284e5491586ab4a2ea2e639da
85 rdf:rest N14c1611f70b5426a84e6527fdd4c4da8
86 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
87 schema:name Information and Computing Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
90 schema:name Artificial Intelligence and Image Processing
91 rdf:type schema:DefinedTerm
92 sg:person.010145067313.58 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
93 schema:familyName Nagano
94 schema:givenName Hikaru
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010145067313.58
96 rdf:type schema:Person
97 sg:person.01101070023.41 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
98 schema:familyName Konyo
99 schema:givenName Masashi
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101070023.41
101 rdf:type schema:Person
102 sg:person.013454033251.77 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
103 schema:familyName Tadokoro
104 schema:givenName Satoshi
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013454033251.77
106 rdf:type schema:Person
107 sg:person.014260402137.05 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
108 schema:familyName Babu
109 schema:givenName Dennis
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014260402137.05
111 rdf:type schema:Person
112 sg:person.015055762537.93 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
113 schema:familyName Kim
114 schema:givenName Seonghwan
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015055762537.93
116 rdf:type schema:Person
117 https://doi.org/10.1109/3516.951362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061160562
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/haptic.2012.6183785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094354159
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/iros.2009.5354203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093762084
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/tnsre.2014.2327229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061740861
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/whc.2011.5945503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093204299
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/whc.2015.7177748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094130166
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1145/1180995.1181017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033056308
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1145/1520340.1520568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002493830
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1145/2380116.2380173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002545604
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1145/2642918.2647407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007302830
136 rdf:type schema:CreativeWork
137 https://doi.org/10.3390/s130506380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049629392
138 rdf:type schema:CreativeWork
139 https://www.grid.ac/institutes/grid.69566.3a schema:alternateName Tohoku University
140 schema:name Human Robot Informatics Lab, Graduate School of Information Sciences, Tohoku University
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...